203
Views
2
CrossRef citations to date
0
Altmetric
Original Article

An efficient fractional-order wavelet method for fractional Volterra integro-differential equations

ORCID Icon
Pages 2396-2418 | Received 08 Jul 2016, Accepted 12 Sep 2017, Published online: 06 Nov 2017

References

  • A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Soliton. Fract. 40 (2009), pp. 521–529. doi: 10.1016/j.chaos.2007.08.001
  • A.H. Bhrawy and M.A. Zaky, A Shifted fractional-order Jacobi orthogonal functions: An application for system of fractional differential equations, Appl. Math. Model. 40(2) (2016), pp. 832–845. doi: 10.1016/j.apm.2015.06.012
  • G. Bohannan, Analog fractional order controller in temperature and motor control applications, J. Vib. Control. 14 (2008), pp. 1487–1498. doi: 10.1177/1077546307087435
  • C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988.
  • T. Chow, Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys. Lett. A 342 (2005), pp. 148–155. doi: 10.1016/j.physleta.2005.05.045
  • C.K. Chui, Wavelets. Vol. 1: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, 1997.
  • E.H. Doha, A.H. Bhrawy, D. Baleanu, S.S. Ezz-Eldien, and R.M. Hafez, An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems, Adv. Differ. Equ. 1 (2015), pp. 1–17.
  • M.R. Eslahchi, M. Dehghan, and M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math. 257 (2014), pp. 105–128. doi: 10.1016/j.cam.2013.07.044
  • A.M. Golberg, Solution Methods for Integral Equations: Theory and Applications, Plenum Press, New York, 1979.
  • J.H. He, Nonlinear oscillation with fractional derivative and its applications, in International Conference on Vibrating Engineering'98, Dalian, China, 1998, pp. 288–291.
  • J. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15(2) (1999), pp. 86–90.
  • M.H. Heydari, M.R. Hooshmandasl, and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput. 234 (2014), pp. 267–276.
  • M.H. Heydari, M.R. Hooshmandasl, and F. Mohammadi, Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph equation, Adv. Appl. Math. Mech. 6(02) (2014), pp. 247–260. doi: 10.4208/aamm.12-m12132
  • A.J. Jerri, Introduction to Integral Equations with Applications, Marcel Dekker, New York, 1971.
  • W. Jiang and T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model. 39(16) (2015), pp. 4871–4876. doi: 10.1016/j.apm.2015.03.053
  • S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model. 37(7) (2013), pp. 5498–5510. doi: 10.1016/j.apm.2012.10.026
  • E. Keshavarz, Y. Ordokhani, and M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model. 38(24) (2014), pp. 6038–6051. doi: 10.1016/j.apm.2014.04.064
  • B. Li, Numerical solution of fractional Fredholm-Volterra integro-differential equations by means of generalized hat functions method, CMES Comput. Model. Eng. Sci. 99(2) (2014), pp. 105–122.
  • N. Liu and E.B. Lin, Legendre wavelet method for numerical solutions of partial differential equations, Numer. Methods Partial Diff. Equ. 26(1) (2010), pp. 81–94. doi: 10.1002/num.20417
  • F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, preprint (2012). Available at arXiv preprint arXiv:1201.0863.
  • S. Mashayekhi and M. Razzaghi, Numerical solution of nonlinear fractional integro-differential equations by hybrid functions, Eng. Anal. Bound. Elem. 56 (2015), pp. 81–89. doi: 10.1016/j.enganabound.2015.02.002
  • F. Mirzaee, S. Bimesl, and E. Tohidi, Solving nonlinear fractional integro-differential equations of Volterra type using novel mathematical matrices, J. Comput. Nonlin. Dyn. 10(6) (2015), pp. 061016.
  • F. Mohammadi, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations, J. Franklin Inst. 348(8) (2011), pp. 1787–1796. doi: 10.1016/j.jfranklin.2011.04.017
  • F. Mohammadi, Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative, Int. J. Adv. Appl. Math. and Mech. 2(1) (2014), pp. 83–91.
  • F. Mohammadi, A wavelet-based computational method for solving stochastic Itô-Volterra integral equations, J. Comput. Phys. 298 (2015), pp. 254–265. doi: 10.1016/j.jcp.2015.05.051
  • F. Mohammadi, Second Kind Chebyshev Wavelet Galerkin Method for Stochastic Itô-Volterra Integral Equations, Mediterr. J. Math. 13(5) (2016), pp. 2613–2631. doi: 10.1007/s00009-015-0642-z
  • F. Mohammadi, Numerical Solution of Stchastic Voltera-Fredholm integral with Haar wavelets, U.P.B. Sci. Bull., Ser. A 78(2) (2016), pp. 111–126.
  • F. Mohammadi and M.M. Hosseini, A comparative study of numerical methods for solving quadratic Riccati differential equations, J. Franklin Inst. 348(2) (2011), pp. 156–164. doi: 10.1016/j.jfranklin.2010.10.011
  • F. Mohammadi, M.M. Hosseini, and S.T. Mohyud-Din, Legendre wavelet Galerkin method for solving ordinary differential equations with non-analytic solution, J. Systems Sci. 42(4) (2011), pp. 579–585. doi: 10.1080/00207721003658194
  • P. Mokhtary, Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations, J. Comput. Appl. Math. 279 (2015), pp. 145–158. doi: 10.1016/j.cam.2014.11.001
  • P. Mokhrary, Discrete Galerkin method for fractional integro-differential equations, Acta Math. Sci. 36(2) (2016), pp. 560–578. doi: 10.1016/S0252-9602(16)30021-2
  • S.M. Momani, Local and global existence theorems on fractional integro-differential equations, J. Fract. Calc. 18 (2000), pp. 81–86.
  • S.M. Momani, A. Jameel, and S. Al-Azawi, Local and global uniqueness theorems on fractional integro-differential equations via Biharis and Gronwalls inequalities, Soochow, J. Math. 33 (2007), pp. 619–627.
  • R. Panda and M. Dash, Fractional generalized splines and signal processing, Signal Process. 86 (2006), pp. 2340–2350. doi: 10.1016/j.sigpro.2005.10.017
  • M. Parvizi and M.R. Eslahchi, The convergence and stability analysis of the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions, Math. Methods Appl. Sci. 39(8) (2016), pp. 2038–2056. doi: 10.1002/mma.3619
  • I. Podlubny, Fractional Differential equations: An Introduction to Fractional Derivatives, Fractional Differential equations, to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1998.
  • X.J. Quan, H.L. Han, and J. Wang, The Adomian decomposition method for sloving nonlinear volterra integral equations of fractional order, J. Jiangxi Norm. Univ. Nat. Sci. Ed. 5 (2014), pp. 1–18.
  • P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model. 40(17) (2016), pp. 8087–8107. doi: 10.1016/j.apm.2016.04.026
  • E.A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), pp. 1–6.
  • M. Razzaghi and S. Yousefi, The Legendre wavelets operational matrix of integration, Int. J. Systems Sci. 32.4 (2001), pp. 495–502. doi: 10.1080/00207720120227
  • A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59(3) (2010), pp. 1326–1336. doi: 10.1016/j.camwa.2009.07.006
  • H. Saeedi and M.M. Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun, Nonlinear Sci. Numer. Simul. 16(3) (2011), pp. 1216–1226. doi: 10.1016/j.cnsns.2010.07.017
  • P.K. Sahu and S.S. Ray, A novel Legendre wavelet Petrov–Galerkin method for fractional Volterra integro-differential equations, Comput. Math. Appl. (2016). Available at https://doi.org/10.1016/j.camwa.2016.04.042.
  • E. Suli and D.F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003.
  • N.H. Sweilam and M.M. Khader, A Chebyshev pseudo-spectral method for solving fractional-order integro-differential equations, ANZIAM J. 51(4) (2010), pp. 464–475. doi: 10.1017/S1446181110000830
  • Y. Yin, C. Yanping, and H. Yunqing, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. 34(3) (2014), pp. 673–690. doi: 10.1016/S0252-9602(14)60039-4
  • L. Zhu and Q. Fan, Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW, Commun. Nonlinear Sci. Numer. Simul. 18(5) (2013), pp. 1203–1213. doi: 10.1016/j.cnsns.2012.09.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.