360
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Fractional-order modelling and simulation of human ear

ORCID Icon &
Pages 1257-1273 | Received 15 May 2017, Accepted 11 Sep 2017, Published online: 27 Nov 2017

References

  • J.B. Allen, Measurement of eardrum acoustic impedance, in Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A.E. Hubbard, S.T. Neely, and A. Tubis, eds., Springer, Berlin, Heidelberg, 1986, pp. 44–51.
  • J.B. Allen, P.S. Jeng, and H. Levitt, Evaluation of human middle ear function via an acoustic power assessment, J. Rehabil. Res. Dev. 42 (2005), pp. 63–78. doi: 10.1682/JRRD.2005.04.0064
  • P. Avan, B. Buki, B. Maat, M. Dordain, and H.P. Wit, Middle ear influence on otoacoustic emissions. I: Noninvasive investigation of the human transmission apparatus and comparison with model results, Hear. Res. 140 (2000), pp. 189–201. doi: 10.1016/S0378-5955(99)00201-4
  • F. Bohnke, T. Bretan, S. Lehner, and T. Strenger, Simulations and measurements of human middle ear vibrations using multi-body systems and laser-doppler vibrometry with the floating mass transducer, Materials 6 (2013), pp. 4675–4688. doi: 10.3390/ma6104675
  • A.M. Brown, F.P. Harris, and H.A. Beveridge, Two sources of acoustic distortion products from the human cochlea, J. Acoust. Soc. Am. 100 (1996), pp. 3260–3267. doi: 10.1121/1.417209
  • W. Cai, W. Chen, and W. Xu, Fractional modeling of pasternak-type viscoelastic foundation, Mech. Time Depend. Mater. 21 (2017), pp. 119–131. doi: 10.1007/s11043-016-9321-0
  • T. Cheng, C. Dai, and R.Z. Gan, Viscoelastic properties of human tympanic membrane, Ann. Biomed. Eng. 35 (2007), pp. 305–314. doi: 10.1007/s10439-006-9227-0
  • D. Craiem and R.L. Armentano, A fractional derivative model to describe arterial viscoelasticity, Biorheology 44 (2007), pp. 251–263.
  • D. Craiem, F.J. Rojo, J.M. Atienza, R.L. Armentano, and G.V. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol. 53 (2008), pp. 4543–4554. doi: 10.1088/0031-9155/53/17/006
  • G.B. Davis, M. Kohandel, S. Sivaloganathan, and G. Tenti, The constitutive properties of the brain paraenchyma: Part 2. fractional derivative approach, Med. Eng. Phys. 28 (2006), pp. 455–459. doi: 10.1016/j.medengphy.2005.07.023
  • W.F. Decraemer, M.A. Maes, and V.J. Vanhuyse, An elastic stress–strain relation for soft biological tissues based on a structural model, J. Biomech. 13 (1980), pp. 463–468. doi: 10.1016/0021-9290(80)90338-3
  • D.A. Fedosov, B. Caswell, and G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J. 98 (2010), pp. 2215–2225. doi: 10.1016/j.bpj.2010.02.002
  • B. Feng and R.Z. Gan, Lumped parametric model of the human ear for sound transmission, Biomech. Model. Mechanobiol. 3 (2004), pp. 33–47. doi: 10.1007/s10237-004-0044-9
  • R.L. Goode, M. Killion, K. Nakamura, and S. Nishihara, New knowledge about the function of the human middle ear: development of an improved analog model, Otol. Neurotol. 15 (1994), pp. 145–154.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Mainz and Stuttgart, Germany, 2000.
  • A. Jaishankar and G.H. McKinley, Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations, in Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, Vol. 469, The Royal Society, London, 2013, pp. 1–18.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • Y. Kobayashi, K. Atsushi, H. Watanabe, T. Hoshi, K. Kawamura, and M.G. Fujie, Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations, J. Biomech. Sci. Eng. 7 (2012), pp. 177–187. doi: 10.1299/jbse.7.177
  • M. Kohandel, S. Sivaloganathan, G. Tenti, and K. Darvish, Frequency dependence of complex moduli of brain tissue using a fractional zener model, Phys. Med. Biol. 50 (2005), pp. 2799–2805. doi: 10.1088/0031-9155/50/12/005
  • M. Kringlebotn, Network model for the human middle ear, Scand. Audiol. 17 (1988), pp. 75–85. doi: 10.3109/01050398809070695
  • M.E. Lutman and A.M. Martin, Development of an electroacoustic analogue model of the middle ear and acoustic reflex, J. Sound Vib. 64 (1979), pp. 133–157. doi: 10.1016/0022-460X(79)90578-9
  • R.L. Magin, Fractional Calculus in Bioengineering, Begell House, Redding, 2006.
  • R.L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), pp. 1586–1593. doi: 10.1016/j.camwa.2009.08.039
  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, Singapore, 2010.
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, 1993.
  • M. Naghibolhosseini, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, Doctoral dissertation, City University of New York, 2015.
  • M. Naghibolhosseini and G.R. Long, Estimation of round-trip outer-middle ear gain using DPOAEs, J. Assoc. Res. Otolaryngol. 18 (2017), pp. 121–138. doi: 10.1007/s10162-016-0592-6
  • H.H. Nakajima, W. Dong, E.S. Olson, S.N. Merchant, M.E. Ravicz, and J.J. Rosowski, Differential intracochlear sound pressure measurements in normal human temporal bones, J. Assoc. Res. Otolaryngol. 10 (2009), pp. 23–36. doi: 10.1007/s10162-008-0150-y
  • T.S.K. Ng and G.H. McKinley, Power law gels at finite strains: The nonlinear rheology of gluten gels, J. Rheol. 52 (2008), pp. 417–449. doi: 10.1122/1.2828018
  • S. Nicolle, P. Vezin, and J.-F. Palierne, A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues, J. Biomech. 43 (2010), pp. 927–932. doi: 10.1016/j.jbiomech.2009.11.002
  • K.N. O'Connor and S. Puria, Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones, J. Acoust. Soc. Am 120 (2006), pp. 1517–1528. doi: 10.1121/1.2221414
  • K.N. O'Connor and S. Puria, Middle-ear circuit model parameters based on a population of human ears, J. Acoust. Soc. Am. 123 (2008), pp. 197–211. doi: 10.1121/1.2817358
  • K.N. O'Connor, M. Tam, N.H. Blevins, and S. Puria, Tympanic membrane collagen fibers: A key to high-frequency sound conduction, Laryngoscope 118 (2008), pp. 483–490. doi: 10.1097/MLG.0b013e31815b0d9f
  • K. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Vol. 111, Elsevier, New York, 1974.
  • P. Parent and J.B. Allen, Time-domain ‘wave’ model of the human tympanic membrane, Hear. Res. 263 (2010), pp. 152–167. doi: 10.1016/j.heares.2009.12.015
  • A.L. Perlman, I.R. Titze, and D.S. Cooper, Elasticity of canine vocal fold tissue, J. Speech Lan. Hear. Res. 27 (1984), pp. 212–219. doi: 10.1044/jshr.2702.212
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198, Academic press, San Diego, CA, 1999.
  • M. Puig-de Morales-Marinkovic, K.T. Turner, J.P. Butler, J.J. Fredberg, and S. Suresh, Viscoelasticity of the human red blood cell, Am. J. Physiol. Cell Physiol. 293 (2007), pp. C597–C605. doi: 10.1152/ajpcell.00562.2006
  • S. Puria, Measurements of human middle ear forward and reverse acoustics: Implications for otoacoustic emissions, J. Acoust. Soc. Am. 113 (2003), pp. 2773–2789. doi: 10.1121/1.1564018
  • R.A. Scheperle, S.S. Goodman, and S.T. Neely, Further assessment of forward pressure level for in situ calibration, J. Acoust. Soc. Am. 130 (2011), pp. 3882–3892. doi: 10.1121/1.3655878
  • H. Schiessel, R. Metzler, A. Blumen, and T. Nonnenmacher, Generalized viscoelastic models: Their fractional equations with solutions, J. Phys. Math. Gen. 28 (1995), pp. 6567–6584. doi: 10.1088/0305-4470/28/23/012
  • E.A.G. Shaw and M.R. Stinson, Network concepts and energy flow in the human middle-ear, J. Acoust. Soc. Am. 69 (1981), pp. S43–S43. doi: 10.1121/1.386273
  • M.R. Stinson and B.W. Lawton, Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution, J. Acoust. Soc. Am. 85 (1989), pp. 2492–2503. doi: 10.1121/1.397744
  • C. Talmadge, A. Tubis, P. Piskorski, and G. Long, Modeling otoacoustic emission fine structures, in Diversity in Auditory Mechanics, E. Lewis, G. Long, R. Lyon, P. Narins, and C. Steele, eds., Word Scientific, Singapore, 1997, pp. 462–471.
  • H. Wada, T. Metoki, and T. Kobayashi, Analysis of dynamic behavior of human middle ear using a finite-element method, J. Acoust. Soc. Am. 92 (1992), pp. 3157–3168. doi: 10.1121/1.404211
  • X. Zhang and R.Z. Gan, Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint, Biomech. Model. Mechanobiol. 10 (2011), pp. 713–726. doi: 10.1007/s10237-010-0268-9
  • J. Zwislocki, Analysis of the middle ear function. Part I: Input impedance, J. Acoust. Soc. Am. 34 (1962), pp. 1514–1523. doi: 10.1121/1.1918382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.