195
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations

, , &
Pages 2511-2524 | Received 02 Sep 2017, Accepted 19 Oct 2017, Published online: 05 Dec 2017

References

  • K. Burrage, P.M. Burrage, and T. Tian, Numerical methods for strong solutions of stochastic differential equations: An overview, Proc. R. Soc. Lond. Ser. A 460 (2004), pp. 373–402. doi: 10.1098/rspa.2003.1247
  • M. Calvo, M.P. Laburta, J.I. Montijano, and L. Rández, Runge–Kutta projection methods with low dispersion and dissipation errors, Adv. Comput. Math. 41 (2015), pp. 231–251. doi: 10.1007/s10444-014-9355-2
  • D. Cohen and G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci. 12 (2014), pp. 1523–1539. doi: 10.4310/CMS.2014.v12.n8.a7
  • X. Ding, Q. Ma, and L. Zhang, Convergence and stability of the split-step θ-method for stochastic differential equations, Comput. Math. Appl. 60 (2010), pp. 1310–1321. doi: 10.1016/j.camwa.2010.06.011
  • E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, Berlin, 1993.
  • E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer, Berlin, 2006.
  • J. Hong, S. Zhai, and J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity, SIAM J. Numer. Anal. 49 (2011), pp. 2017–2038. doi: 10.1137/090771880
  • J. Hong, D. Xu, and P. Wang, Preservation of quadratic invariants of stochastic differential equations via Runge–Kutta methods, Appl. Numer. Math. 87 (2015), pp. 38–52. doi: 10.1016/j.apnum.2014.08.003
  • F. Jiang, X. Zong, C. Yue, and C. Huang, Double-implicit and split two-step Milstein schemes for stochastic differential equations, Int. J. Comput. Math. 93 (2016), pp. 1987–2011. doi: 10.1080/00207160.2015.1081182
  • P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
  • Q. Ma and X. Ding, Stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise, Appl. Math. Comput. 252 (2015), pp. 520–534.
  • X. Mao, Stochastic Differential Equations and Their Applications, Horwood, New York, 1997.
  • R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), pp. 1021–1045. doi: 10.1098/rsta.1999.0363
  • G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.
  • G.N. Milstein and M.V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.
  • T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems, Jpn. J. Ind. Appl. Math. 17 (2000), pp. 119–128. doi: 10.1007/BF03167340
  • R.A. Norton and G.R.W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation, Discrete Contin. Dyn. Syst. 34 (2014), pp. 1147–1170. doi: 10.3934/dcds.2014.34.1147
  • R.A. Norton, D.I. Mclaren, G.R.W. Quispel, A. Stern, and A. Zanna, Projection methods and discrete gradient methods for preserving first integrals of ODEs, Discrete Contin. Dyn. Syst. 35 (2015), pp. 2079–2098. doi: 10.3934/dcds.2015.35.2079
  • B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2005.
  • M.A. Omar, A. Aboul-Hassan, and S.I. Rabia, The composite Milstein methods for the numerical solution of Stratonovich stochastic differential equations, Appl. Math. Comput. 215 (2009), pp. 727–745.
  • G.R.W. Quispel and G.S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A: Math. Gen. 29 (1996), pp. L341–L349. doi: 10.1088/0305-4470/29/13/006
  • M.V. Tretyakov and Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications, SIAM J. Numer. Anal. 51 (2013), pp. 3135–3162. doi: 10.1137/120902318
  • X. Wang and S. Gan, The improved split-step backward Euler method for stochastic differential delay equations, Int. J. Comput. Math. 88 (2011), pp. 2359–2378. doi: 10.1080/00207160.2010.538388
  • X. Wang, S. Gan, and D. Wang, A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise, BIT Numer. Math. 52 (2012), pp. 741–772. doi: 10.1007/s10543-012-0370-8
  • C. Yue, C. Huang, and F. Jiang, Strong convergence of split-step theta methods for non-autonomous stochastic differential equations, Int. J. Comput. Math. 91 (2014), pp. 2260–2275. doi: 10.1080/00207160.2013.871541
  • H. Zhang and S. Gan, Mean square convergence of one-step methods for neutral stochastic differential delay equations, Appl. Math. Comput. 204 (2008), pp. 884–890.
  • Z. Zhang and G.E. Karniadakis, Numerical Methods for Stochastic Partial Differential Equations with White Noise, Springer, Cham, 2017.
  • W. Zhou, L. Zhang, J. Hong, and S. Song, Projection methods for stochastic differential equations with conserved quantities, BIT Numer. Math. 56 (2016), pp. 1497–1518. doi: 10.1007/s10543-016-0614-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.