367
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Fractional pseudo-spectral methods for distributed-order fractional PDEs

&
Pages 1340-1361 | Received 15 May 2017, Accepted 11 Sep 2017, Published online: 30 Jan 2018

References

  • T.M. Atanackovic, S. Pilipovic, and D. Zorica, Existence and calculation of the solution to the time distributed order diffusion equation, Phys. Scripta 2009 (2009), p. 014012.
  • T.M. Atanackovic, S. Pilipovic, and D. Zorica, Time distributed-order diffusion-wave equation. I. Volterra-type equation, Proc. R. Soc. A 465 (2009), pp. 1869–1891. doi: 10.1098/rspa.2008.0445
  • B. Baeumer, D.A. Benson, M. Meerschaert, and S.W. Wheatcraft, Subordinated advection–dispersion equation for contaminant transport, Water Resour. Res. 37 (2001), pp. 1543–1550. doi: 10.1029/2000WR900409
  • A.H. Bhrawy, E.H. Doha, D. Baleanu, and S.S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. 293 (2015), pp. 142–156. doi: 10.1016/j.jcp.2014.03.039
  • J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys. 238 (2013), pp. 154–168. doi: 10.1016/j.jcp.2012.12.013
  • A.V. Chechkin, R. Gorenflo, and I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E 66 (2002), p. 046129. doi: 10.1103/PhysRevE.66.046129
  • S. Chen, J. Shen, and L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput. 85 (2016), pp. 1603–1638. doi: 10.1090/mcom3035
  • W. Chen, J. Zhang, and J. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures, Fract. Calc. Appl. Anal. 16 (2013), pp. 76–92.
  • D. del Castillo-Negrete, B.A. Carreras, and V.E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas 11 (2004), pp. 3854–3864. doi: 10.1063/1.1767097
  • K. Diethelm and N.J. Ford, Numerical solution methods for distributed order differential equations, Fract. Calc. Appl. Anal. 4 (2001), pp. 531–542.
  • K. Diethelm and N.J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math. 225 (2009), pp. 96–104. doi: 10.1016/j.cam.2008.07.018
  • P.L.T. Duong, E. Kwok, and M. Lee, Deterministic analysis of distributed order systems using operational matrix, Appl. Math. Model. 40 (2016), pp. 1929–1940. doi: 10.1016/j.apm.2015.09.035
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), pp. 558–576. doi: 10.1002/num.20112
  • V.J. Ervin and J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Methods Partial Differential Equations 23 (2007), pp. 256–281. doi: 10.1002/num.20169
  • N.J. Ford, M.L. Morgado, and M. Rebelo, A numerical method for the distributed order time-fractional diffusion equation, 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, 2014, pp. 1–6.
  • G.-H. Gao and Z.-Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl. 69 (2015), pp. 926–948. doi: 10.1016/j.camwa.2015.02.023
  • G. Gao and Z. Sun, Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations, Numer. Methods Partial Differential Equations 32 (2016), pp. 591–615. doi: 10.1002/num.22020
  • G.-H. Gao, H.-W. Sun, and Z.-Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), pp. 337–359. doi: 10.1016/j.jcp.2015.05.047
  • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam. 29 (2002), pp. 129–143. doi: 10.1023/A:1016547232119
  • X. Hu, F. Liu, I. Turner, and V. Anh, An implicit numerical method of a new time distributed-order and two-sided space-fractional advection–dispersion equation, Numer. Algorithms (2015), pp. 1–15.
  • A. Jaishankar and G.H. McKinley, Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations, Proc. R. Soc. A 469 (2013), p. 20120284.
  • A. Jaishankar and G.H. McKinley, A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids, J. Rheol. 58 (2014), pp. 1751–1788. doi: 10.1122/1.4892114
  • R. Jha, P.K. Kaw, D.R. Kulkarni, J.C. Parikh, and A. Team, Evidence of Lévy stable process in tokamak edge turbulence, Phys. Plasmas 10 (2003), pp. 699–704. doi: 10.1063/1.1541607
  • M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul 16 (2011), pp. 2535–2542. doi: 10.1016/j.cnsns.2010.09.007
  • M. Khader and A. Hendy, The approximate and exact solutions of the fractional-order delay differential equations using legendre pseudospectral method, Int. J. Pure Appl. Math. 74 (2012), pp. 287–297.
  • E. Kharazmi, M. Zayernouri, and G.E. Karniadakis, Petrov–Galerkin and spectral collocation methods for distributed order differential equations, SIAM J. Sci. Comput. 39 (2017), pp. A1003–A1037. doi: 10.1137/16M1073121
  • E. Kharazmi, M. Zayernouri, and G.E. Karniadakis, A Petrov–Galerkin spectral element method for fractional elliptic problems, Comput. Methods Appl. Mech. Engrg. 324 (2017), pp. 512–536. doi: 10.1016/j.cma.2017.06.006
  • X.Y. Li and B.Y. Wu, A numerical method for solving distributed order diffusion equations, Appl. Math. Lett. 53 (2016), pp. 92–99. doi: 10.1016/j.aml.2015.10.009
  • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), pp. 2108–2131. doi: 10.1137/080718942
  • X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Comput. Phys. Comm. 8 (2010), p. 1016.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • A. Lischke, M. Zayernouri, and G.E. Karniadakis, A Petrov–Galerkin spectral method of linear complexity for fractional multiterm odes on the half line, SIAM J. Sci. Comput. 39 (2017), pp. A922–A946. doi: 10.1137/17M1113060
  • F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput. 187 (2007), pp. 295–305.
  • F.C. Meral, T.J. Royston, and R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), pp. 939–945. doi: 10.1016/j.cnsns.2009.05.004
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, NY, 1993.
  • M.L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction–diffusion equations, J. Comput. Appl. Math. 275 (2015), pp. 216–227. doi: 10.1016/j.cam.2014.07.029
  • M. Naghibolhosseini, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, City University of New York, 2015.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
  • E. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), pp. 1–6.
  • M. Samiee and Z.M. M.M. Meerschaert, A unified spectral method for fpdes with two-sided derivatives; Part I: A fast solver, J. Comput. Phys. 102 (2017), pp. 29–46.
  • S. Shen, F. Liu, J. Chen, I. Turner, and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput. 218 (2012), pp. 10861–10870.
  • K.R. Sreenivasan and R.A. Antonia, The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech. 29 (1997), pp. 435–472. doi: 10.1146/annurev.fluid.29.1.435
  • T. Srokowski, Lévy flights in nonhomogeneous media: Distributed-order fractional equation approach, Phys. Rev. E 78 (2008), p. 031135. doi: 10.1103/PhysRevE.78.031135
  • N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech. 225 (1991), p. 4. doi: 10.1017/S0022112091002203
  • Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • H.G. Sun, W. Chen, and Y.Q. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A 388 (2009), pp. 4586–4592. doi: 10.1016/j.physa.2009.07.024
  • J.L. Suzuki, M. Zayernouri, M.L. Bittencourt, and G.E. Karniadakis, Fractional-order uniaxial visco-elasto-plastic models for structural analysis, Comput. Methods Appl. Mech. Engrg. 308 (2016), pp. 443–467. doi: 10.1016/j.cma.2016.05.030
  • K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection–diffusion equations, Adv. Water. Resour. 34 (2011), pp. 810–816. doi: 10.1016/j.advwatres.2010.11.003
  • H. Wang and X. Zhang, A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations, J. Comput. Phys. 281 (2015), pp. 67–81. doi: 10.1016/j.jcp.2014.10.018
  • H. Wang, K. Wang, and T. Sircar, A direct O(Nlog2⁡N) finite difference method for fractional diffusion equations, J. Comput. Phys. 229 (2010), pp. 8095–8104. doi: 10.1016/j.jcp.2010.07.011
  • H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys. 298 (2015), pp. 652–660. doi: 10.1016/j.jcp.2015.06.025
  • M. Zayernouri and G.E. Karniadakis, Fractional Sturm–Liouville eigen-problems: theory and numerical approximations, J. Comput. Phys. 47-3 (2013), pp. 2108–2131.
  • M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput. 36 (2014), pp. A40–A62. doi: 10.1137/130933216
  • M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order fpdes, J. Comput. Phys. 293 (2015), pp. 312–338. doi: 10.1016/j.jcp.2014.12.001
  • M. Zayernouri and A. Matzavinos, Fractional Adams–Bashforth/Moulton methods: An application to the fractional Keller–Segel chemotaxis system, J. Comput. Phys. 317 (2016), pp. 1–14. doi: 10.1016/j.jcp.2016.04.041
  • M. Zayernouri, M. Ainsworth, and G.E. Karniadakis, Tempered fractional Sturm–Liouville eigenproblems, SIAM J. Sci. Comput. 37 (2015), pp. A1777–A1800. doi: 10.1137/140985536
  • F. Zeng, C. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37 (2015), pp. A55–A78. doi: 10.1137/14096390X
  • H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model, Comput. Math. Appl. 66 (2013), pp. 693–701. doi: 10.1016/j.camwa.2013.01.031
  • Y. Zhang, H. Sun, H.H. Stowell, M. Zayernouri, and S.E. Hansen, A review of applications of fractional calculus in earth system dynamics, Chaos Solitons Fractals 102 (2017), pp. 29–46. doi: 10.1016/j.chaos.2017.03.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.