674
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Crank–Nicolson Fourier spectral methods for the space fractional nonlinear Schrödinger equation and its parameter estimation

, , &
Pages 238-263 | Received 10 Sep 2017, Accepted 22 Jan 2018, Published online: 02 Mar 2018

References

  • M. Ainsworth and Z.P. Mao, Analysis and approximation of a fractional Cahn–Hilliard equation, SIAM J. Numer. Anal. 55 (2017), pp. 1689–1718. doi: 10.1137/16M1075302
  • X. Antoine, Q.L. Tang, and Y. Zhang, On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, J. Comput. Phys. 325 (2016), pp. 74–97. doi: 10.1016/j.jcp.2016.08.009
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods, Springer-Verlag, Germany, 2006.
  • S. Chen, F. liu, X.Y. Jiang, I. Turner, and K. Burrage, Fast finite difference approximation for identifying parameters a two-dimensional space-fractional model with variable diffusivity coeficients, SIAM J. Numer. Anal. 54 (2016), pp. 606–624. doi: 10.1137/15M1019301
  • D. Craiem, F.J. Rojo, J.M. Atienza, R.L. Armentano, and G.V. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol. 53 (2008), pp. 4543–4554. doi: 10.1088/0031-9155/53/17/006
  • K. Diethelm, N.J. Ford, A.D. Freed, and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg. 194 (2005), pp. 743–773. doi: 10.1016/j.cma.2004.06.006
  • F. Ding, X.M. Liu, and X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition, J. Comput. Appl. Math. 301 (2016), pp. 135–143. doi: 10.1016/j.cam.2016.01.042
  • S.W. Duo and Y.Z. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl. 71 (2016), pp. 2257–2271. doi: 10.1016/j.camwa.2015.12.042
  • B. Fornberg, High-order finite differences and the pseudospectral method on staggered grids, SIAM J. Numer. Anal. 27 (1990), pp. 904–918. doi: 10.1137/0727052
  • B.Y. Guo and C. Zhang, The spectral method for high order problems with proper simulations of asymptotic behaviors at infinity, J. Comput. Appl. Math. 237 (2013), pp. 269–294. doi: 10.1016/j.cam.2012.08.009
  • B. Guo, Y. Han, and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput. 204 (2008), pp. 468–477.
  • J.F. Huang and D.D. Yang, A unified difference-spectral method for time-space fractional diffusion equations, Int. J. Comput. Math. 94 (2017), pp. 1172–1184. doi: 10.1080/00207160.2016.1184262
  • A. Iomin, Fractional-time quantum dynamics, Phys. Rev. E 80 (2009), p. 22103. doi: 10.1103/PhysRevE.80.022103
  • X.Y. Jiang, H.T. Qi, and M.Y. Xu, Exact solutions of fractional Schrödinger-like equation with a nonlocal term, J. Math. Phys. 52 (2011), p. 042105. doi: 10.1063/1.3576189
  • K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D 332 (2016), pp. 41–54. doi: 10.1016/j.physd.2016.05.015
  • N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2000), pp. 3135–3145. doi: 10.1103/PhysRevE.62.3135
  • H.L. Lee, T.H. Lai, W.L. Chen, and Y.C. Yang, An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue, Appl. Math. Model. 37 (2013), pp. 2630–2643. doi: 10.1016/j.apm.2012.06.025
  • D. Li, An inverse problem for the Schrödinger equation with variable coefficients and lower order terms, J. Math. Anal. Appl. 427 (2015), pp. 930–940. doi: 10.1016/j.jmaa.2015.02.079
  • M. Li, C.M. Huang, and P.D. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms 74 (2017), pp. 499–525. doi: 10.1007/s11075-016-0160-5
  • Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • P. Liu, Q. Shi, H.D. Lll, and G.A. Voth, A Bayesian statistics approach to multiscale coarse graining, J. Chem. Phys. 129 (2008), p. 214114.
  • F. Liu, P. Zhuang, I. Turnera, and K. Burragea, A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys. 293 (2015), pp. 252–263. doi: 10.1016/j.jcp.2014.06.001
  • Q. Liu, F.H. Zeng, and C.P. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math. 92 (2015), pp. 1439–1451. doi: 10.1080/00207160.2014.945440
  • M.M. Meerschaert, J. Mortensenb, and S.W. Wheatcraft, Fractional vector calculus for fractional advection-dispersion, Phys. A 367 (2006), pp. 181–190. doi: 10.1016/j.physa.2005.11.015
  • M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 4 (2004), pp. 3339–3352. doi: 10.1063/1.1769611
  • J. Shen, T. Tang, and L.L. Wang, Spectral Methods, Springer-Verlag, Berlin, Heidelberg, New York, 2011.
  • J.B. Wang and N. Zabaras, Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transfer 48 (2005), pp. 15–29. doi: 10.1016/j.ijheatmasstransfer.2004.08.009
  • J.B. Wang and N. Zabaras, Hierarchical Bayesian models for inverse problems in heat conduction, Inverse Problems 21 (2005), pp. 183–206. doi: 10.1088/0266-5611/21/1/012
  • D. Wang, A. Xiao, and W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013), pp. 670–681. doi: 10.1016/j.jcp.2013.02.037
  • Z.F. Weng, S.Y. Zhai, and X.L. Feng, A Fourier spectral method for fractional-in-space Cahn–Hilliard equation, Appl. Math. Model. 42 (2017), pp. 462–477. doi: 10.1016/j.apm.2016.10.035
  • Y.F. Xu, Quenching phenomenon in a fractional diffusion equation and its numerical simulation, Int. J. Comput. Math. (2017). Available at https://doi.org/10.1080/00207160.2017.1343473.
  • X.D. Ye, The Fourier collocation method for the Cahn-Hilliard equation, Comput. Math. Appl. 44 (2002), pp. 213–229. doi: 10.1016/S0898-1221(02)00142-6
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, Crank–Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, SIAM J. Numer. Anal. 52 (2014), pp. 2599–2622. doi: 10.1137/130934192
  • H. Zhang, X.Y. Jiang, and W.P. Fan, Parameter estimation for the fractional Schrödinger equation using Bayesian method, J. Math. Phys. 57 (2016), p. 082104.
  • J.Z. Zhu, L.Q. Chen, J. Shen, and V. Tikare, Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: Application of a semi-implicit Fourier spectral method, Phys. Rev. E 60 (1999), pp. 3564–3572. doi: 10.1103/PhysRevE.60.3564

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.