468
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Efficient compact finite difference methods for a class of time-fractional convection–reaction–diffusion equations with variable coefficients

&
Pages 264-297 | Received 17 May 2017, Accepted 25 Jan 2018, Published online: 20 Feb 2018

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438. doi: 10.1016/j.jcp.2014.09.031
  • A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, J. R. Soc. Interface 11 (2014), p. 20140352. doi: 10.1098/rsif.2014.0352
  • K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput. 34 (2012), pp. A2145–A2172. doi: 10.1137/110847007
  • S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximations for the fractional Fokker–Planck equation, Appl. Math. Model. 33 (2009), pp. 256–273. doi: 10.1016/j.apm.2007.11.005
  • P.C. Chu and C. Fan, A three-point combined compact difference scheme, J. Comput. Phys. 140 (1998), pp. 370–399. doi: 10.1006/jcph.1998.5899
  • M. Cui, A high-order compact exponential scheme for the fractional convection–diffusion equation, J. Comput. Appl. Math. 255 (2014), pp. 404–416. doi: 10.1016/j.cam.2013.06.001
  • M. Cui, Combined compact difference scheme for the time fractional convection–diffusion equation with variable coefficients, Appl. Math. Comput. 246 (2014), pp. 464–473.
  • M. Cui, Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients, J. Comput. Phys. 280 (2015), pp. 143–163. doi: 10.1016/j.jcp.2014.09.012
  • Y. Dimitrov, Numerical approximations for fractional differential equations, J. Frac. Calc. Appl. 5 (2014), pp. 1–45.
  • G.H. Gao and Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), pp. 586–595. doi: 10.1016/j.jcp.2010.10.007
  • G.H. Gao and H.W. Sun, Three-point combined compact difference schemes for time-fractional advection–diffusion equations with smooth solutions, J. Comput. Phys. 298 (2015), pp. 520–538. doi: 10.1016/j.jcp.2015.05.052
  • G.H. Gao and H.W. Sun, Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection–diffusion equations, Commun. Comput. Phys. 17 (2015), pp. 487–509. doi: 10.4208/cicp.180314.010914a
  • G.H. Gao, Z.Z. Sun, and H.W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259 (2014), pp. 33–50. doi: 10.1016/j.jcp.2013.11.017
  • G.H. Gao, H.W. Sun, and Z.Z. Sun, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys. 280 (2015), pp. 510–528. doi: 10.1016/j.jcp.2014.09.033
  • R. Herrmann, Fractional Calculus: an Introduction for Physicists, World Scientific, Singapore, 2011.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • C.C. Ji and Z.Z. Sun, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation, Appl. Math. Comput. 269 (2015), pp. 775–791.
  • T.A.M. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736. doi: 10.1016/j.jcp.2004.11.025
  • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), pp. 2108–2131. doi: 10.1137/080718942
  • C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015.
  • C.P. Li, Z.G. Zhao, and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), pp. 855–875. doi: 10.1016/j.camwa.2011.02.045
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl. 64 (2012), pp. 2990–3007. doi: 10.1016/j.camwa.2012.01.020
  • Yu. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, Int. J. Geomath. 1 (2011), pp. 257–276. doi: 10.1007/s13137-010-0012-8
  • C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput. 38 (2016), pp. A2699–A2724. doi: 10.1137/15M102664X
  • R. Metzler and J. Klafter, The random Walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • A. Mohebbi and M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection–dispersion equation, Numer. Algorithms 63 (2013), pp. 431–452. doi: 10.1007/s11075-012-9631-5
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, New York, 1997.
  • A. Saadatmandi, M. Dehghan, and M.R. Azizi, The Sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 4125–4136. doi: 10.1016/j.cnsns.2012.03.003
  • A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker Inc., New York, 2001.
  • H. Sun, Z.Z. Sun, and G.H. Gao, Some high order difference schemes for the space and time fractional Bloch–Torrey equations, Appl. Math. Comput. 281 (2016), pp. 356–380.
  • H. Sun, Z.Z. Sun, and G.H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Methods Partial Differential Equations 32 (2016), pp. 970–1001. doi: 10.1002/num.22038
  • W.Y. Tian, H. Zhou, and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • M. Uddin and S. Hag, RBFs approximation method for time fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), pp. 4208–4214. doi: 10.1016/j.cnsns.2011.03.021
  • R.S. Varga, Matrix Iterative Analysis, 2nd ed., Springer-Verlag, Berlin, 2000.
  • S. Vong, P. Lyu, X. Chen, and S.-L. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives, Numer. Algorithms 72 (2016), pp. 195–210. doi: 10.1007/s11075-015-0041-3
  • Y.-M. Wang, A compact finite difference method for solving a class of time fractional convection–subdiffusion equations, BIT Numer. Math. 55 (2015), pp. 1187–1217. doi: 10.1007/s10543-014-0532-y
  • Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), pp. 1–15. doi: 10.1016/j.jcp.2014.08.012
  • S.B. Yuste and L. Acedo, An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005), pp. 1862–1874. doi: 10.1137/030602666
  • Y. Zhang, D.A. Benson, and D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications, Adv. Water Resour. 32 (2009), pp. 561–581. doi: 10.1016/j.advwatres.2009.01.008
  • Y.N. Zhang, Z.Z. Sun, and H.W. Wu, Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal. 49 (2011), pp. 2302–2322. doi: 10.1137/100812707
  • H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model, Comput. Math. Appl. 66 (2013), pp. 693–701. doi: 10.1016/j.camwa.2013.01.031
  • L. Zhao and W. Deng, A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives, Numer. Methods Partial Differential Equations 31 (2015), pp. 1345–1381. doi: 10.1002/num.21947

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.