329
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross–Pitaevskii equations

ORCID Icon, &
Pages 1423-1443 | Received 13 May 2017, Accepted 16 Sep 2017, Published online: 22 Feb 2018

References

  • B.N. Achar, B.T. Yale, and J.W. Hanneken, Time fractional Schrödinger equation revisited, Adv. Math. Phys. 2013 (2013), Article 290216. doi: 10.1155/2013/290216
  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438. doi: 10.1016/j.jcp.2014.09.031
  • B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal. 37 (2000), pp. 1138–1164. doi: 10.1137/S0036142998336916
  • X. Antoine and R. Duboscq, Modeling and computation of bose-einstein condensates: Stationary states, nucleation, dynamics, stochasticity, in Nonlinear Optical and Atomic Systems: At the Interface of Mathematics and Physics, Lecture Notes in Mathematics, Vol. 2146, Springer, Switzerland, 2015, pp. 49–145.
  • X. Antoine and Q. Tang, Perfectly matched layers and pseudospectral schemes for the dynamics of Gross–Pitaevskii equations with rotating term, in preparation (2017).
  • X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys. 4 (2008), pp. 729–796.
  • X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun. 184 (2013), pp. 2621–2633. doi: 10.1016/j.cpc.2013.07.012
  • X. Antoine, C. Besse, and V. Rispoli, High-Order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross–Pitaevskii equations, J. Comput. Phys. 327 (2016), pp. 252–269. doi: 10.1016/j.jcp.2016.09.020
  • X. Antoine, Q. Tang, and Y. Zhang, On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, J. Comput. Phys. 325 (2016), pp. 74–97. doi: 10.1016/j.jcp.2016.08.009
  • X. Antoine, A. Levitt, and Q. Tang, Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method, J. Comput. Phys. 343 (2017), pp. 92–109. doi: 10.1016/j.jcp.2017.04.040
  • X. Antoine, E. Lorin, and Q. Tang, A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations, Mol. Phys. 115 (2017), pp. 1861–1879. doi: 10.1080/00268976.2017.1290834
  • W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod. 6 (2013), pp. 1–135.
  • W. Bao and X. Dong, Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars, J. Comput. Phys. 230 (2011), pp. 5449–5469. doi: 10.1016/j.jcp.2011.03.051
  • W. Bao and J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates, SIAM J. Sci. Comput. 26 (2005), pp. 2020–2028.
  • W. Bao, S. Jin, and P.A. Markowich, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime, J. Comput. Phys. 175 (2002), pp. 487–524. doi: 10.1006/jcph.2001.6956
  • W. Bao, S. Jin, and P.A. Markowich, Numerical study of time-splitting spectral discretization of nonlinear Schödinger equations in the semi-classical regimes, SIAM J. Sci. Comput. 25 (2003), pp. 27–64. doi: 10.1137/S1064827501393253
  • W. Bao, H. Jian, N.J. Mauser, and Y. Zhang, Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials, SIAM J. Appl. Math. 73 (2013), pp. 2100–2123. doi: 10.1137/13091436X
  • W. Bao, Q. Tang, and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys. 235 (2013), pp. 423–445. doi: 10.1016/j.jcp.2012.10.054
  • W. Bao, Q. Tang, and Y. Zhang, Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT, Commun. Comput. Phys. 19 (2016), pp. 1141–1166. doi: 10.4208/cicp.scpde14.37s
  • C. Besse, A relaxation scheme for nonlinear Schrödinger equation, SIAM J. Numer. Anal. 42 (2004), pp. 934–952. doi: 10.1137/S0036142901396521
  • C. Besse, B. Bidégaray, and S. Descombes, Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal. 40 (2002), pp. 26–40. doi: 10.1137/S0036142900381497
  • C. Besse, G. Dujardin, and I. Lacroix-Violet, High-order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, preprint (2015). Available at arXiv:1507.00550v2.
  • M. Bhatti, Fractional Schrödinger wave equation and fractional uncertainty principle, Int. J. Contem. Math. Sci. 2 (2007), pp. 943–950. doi: 10.12988/ijcms.2007.07096
  • A.H. Bhrawy and M.A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, J. Comput. Phys. 294 (2015), pp. 462–483. doi: 10.1016/j.jcp.2015.03.063
  • A.H. Bhrawy and M.A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations, Comput. Math. Appl. 73(6) (2017), pp. 1100–1117. doi: 10.1016/j.camwa.2016.11.019
  • H. Brunner, L. Ling, and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys. 229 (2010), pp. 6613–6622. doi: 10.1016/j.jcp.2010.05.015
  • W. Cao, Z. Zhang, and G.E. Karniadakis, Time-splitting schemes for fractional differential equations I: Smooth solutions, SIAM J. Sci. Comput. 37(4) (2015), pp. A1752–A1776. doi: 10.1137/140996495
  • I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod. Phys. 85 (2013), pp. 299–366. doi: 10.1103/RevModPhys.85.299
  • T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, Amer. Math. Soc., Providence RI, 2003.
  • J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl. 344(2) (2008), pp. 1005–1017. doi: 10.1016/j.jmaa.2008.03.061
  • S. Duo and Y. Zhang, Mass conservative method for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl. 71 (2016), pp. 2257–2271. doi: 10.1016/j.camwa.2015.12.042
  • A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), pp. 500–545. doi: 10.1002/cpa.20134
  • J. Fröhlich, B.L.G. Jonsson, and E. Lenzmann, Effective dynamics for boson stars, Nonlinearity 20 (2007), pp. 1031–1075. doi: 10.1088/0951-7715/20/5/001
  • R. Garrappa, I. Moret, and M. Popolizio, Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys. 293 (2015), pp. 115–134. doi: 10.1016/j.jcp.2014.09.023
  • H.J. Haubold, A.M. Mathai, and R.K. Saxena, Mittag–Leffler functions and their applications, J. Appl. Math. 2011 (2011), Article 298628. doi: 10.1155/2011/298628
  • B. Hicdurmaz and A. Ashyralyev, A stable numerical method for multidimensional time fractional Schrödinger equation, Comput. Math. Appl. 72 (2016), pp. 1703–1713. doi: 10.1016/j.camwa.2016.07.036
  • Z. Huang, S. Jin, P.A. Markowich, and C. Sparber, A Bloch decomposition based numerical method for quantum dynamics in periodic potentials, SIAM J. Sci. Comput. 29 (2007), pp. 515–538. doi: 10.1137/060652026
  • Z. Huang, S. Jin, P.A. Markowich, and C. Sparber, Numerical simulation of the nonlinear Schrödinger equation with multidimensional periodic potentials, Mult. Model. Simul. 7 (2008), pp. 539–564. doi: 10.1137/070699433
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. to appear, arXiv:1511.03453.
  • B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal. 36(1) (2016), pp. 197–221.
  • R. Ke, M. Ng, and H. Sun, A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations, J. Comput. Phys. 303 (2015), pp. 203–211. doi: 10.1016/j.jcp.2015.09.042
  • A.Q.M. Khaliq, X. Liang, and K.M. Furati, A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations, Numer. Algorithms 75(1) (2017), pp. 147–172. doi: 10.1007/s11075-016-0200-1
  • N. Khan, M. Jamil, and A. Ara, Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method, ISRN Math. Phys. 2012 (2012), Article 197068. doi: 10.5402/2012/197068
  • K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D 332 (2016), pp. 41–54. doi: 10.1016/j.physd.2016.05.015
  • D. Kusnezov, A. Bulgac, and G. Dang, Quantum Lévy processes and fractional kinetics, Phys. Rev. Lett. 82 (1999), pp. 1136–1139. doi: 10.1103/PhysRevLett.82.1136
  • T. Langlands and B. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736. doi: 10.1016/j.jcp.2004.11.025
  • N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (2000), pp. 3135–3145. doi: 10.1103/PhysRevE.62.3135
  • N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), pp. 298–305. doi: 10.1016/S0375-9601(00)00201-2
  • N. Laskin, Fractals and quantum mechanics, Chaos 10 (2000), pp. 780–790. doi: 10.1063/1.1050284
  • C. Li, W. Deng, and Y. Wu, Numerical analysis and physical simulations for the time fractional radial diffusion equation, Comput. Math. Appl. 62 (2011), pp. 1024–1037. doi: 10.1016/j.camwa.2011.04.020
  • D. Li, H.-L. Liao, W. Sun, J. Wang, and J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, preprint (2016). Available at arXiv:1612.00562v1.
  • D. Li, J. Wang, and J. Zhang, Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations, preprint (2017).
  • D. Li, J. Zhang, and Z. Zhang, The numerical computation of the time-fractional linear Schrödinger equation on unbounded domain, preprint (2017).
  • X. Liang, A.Q.M. Khaliq, H. Bhatt, and K.M. Furati, The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations, Numer. Algorithms (2017), pp. 1–20. doi: 10.1007/s11075-017-0291-3.
  • H. Liao, D. Li, J. Zhang, and Y. Zhao, Sharp error estimate of nonuniform L1 formula for time-fractional reaction-subdiffusion equations, preprint (2017).
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • A. Lomin, Fractional-time quantum dynamics, Phys. Rev. E 62 (2000), pp. 3135–3145. doi: 10.1103/PhysRevE.62.3135
  • X. Lu, H. Sun, and H. Pang, Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations, Numer. Linear Algebra Appl. 22 (2015), pp. 866–882. doi: 10.1002/nla.1972
  • C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), pp. 2141–2153. doi: 10.1090/S0025-5718-08-02101-7
  • C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput. 24 (2002), pp. 161–182. doi: 10.1137/S1064827501388741
  • A. Mohebbi, M. Abbaszadeh, and M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound Elem. 37 (2013), pp. 475–485. doi: 10.1016/j.enganabound.2012.12.002
  • K. Mustapha, An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal. 31 (2011), pp. 719–739. doi: 10.1093/imanum/drp057
  • M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45 (2004), pp. 3339–3352. doi: 10.1063/1.1769611
  • Z. Odibat, S. Momani, and A. Alawneh, Analytic study on time-fractional Schrödinger equations: Exact solutions by GDTM, J. Phys. 96 (2008), Article 012066.
  • F. Pinsker, W. Bao, Y. Zhang, H. Ohadi, A. Dreismann, and J.J. Baumberg, Fractional quantum mechanics in polariton condensates with velocity-dependent mass, Phys. Rev. B 92 (2015), Article 195310. doi: 10.1103/PhysRevB.92.195310
  • L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
  • K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), pp. 426–447. doi: 10.1016/j.jmaa.2011.04.058
  • J. Shen, T. Tang, and L.-L. Wang, Spectral Methods. Algorithms, Analysis and Applications, Springer, Berlin, 2011.
  • M. Stynes, E. O'Riordan, and J.L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55 (2017), pp. 1057–1079. doi: 10.1137/16M1082329
  • C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, New York, 1999.
  • Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • V.E. Tarasov, Fractional Heisenberg equation, Phys. Lett. A 372 (2006), pp. 2984–2988. doi: 10.1016/j.physleta.2008.01.037
  • M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 46 (2008), pp. 2022–2038. doi: 10.1137/060674636
  • M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal. 50 (2012), pp. 3231–3258. doi: 10.1137/120866373
  • M. Thalhammer and J. Abhau, A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations, J. Comput. Phys. 231 (2012), pp. 6665–6681. doi: 10.1016/j.jcp.2012.05.031
  • M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice formation in a rotating Bose–Einstein condensate, Phys. Rev. A 65 (2002), p. 023603. doi: 10.1103/PhysRevA.65.023603
  • S. Wang and M. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys. 48(4) (2007), p. 043502. doi: 10.1063/1.2716203
  • L. Wei, Y. He, X. Zhang, and S. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des. 59 (2012), pp. 28–34. doi: 10.1016/j.finel.2012.03.008
  • B.J. West, Quantum Lévy propagators, J. Phys. Chem. B 104 (2000), pp. 3830–3832. doi: 10.1021/jp993323u
  • B. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, 2002.
  • Y. Yan, Z. Sun, and J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Comput. Commun. Phys. 22 (2017), pp. 1028–1048. doi: 10.4208/cicp.OA-2017-0019
  • J. Zhang, D. Li, and X. Antoine, Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain, Commun. Comput. Phys. (2018), to appear.
  • C. Zheng, Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation, J. Comput. Math. 25 (2007), pp. 730–745.
  • C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equation, J. Comput. Phys. 227 (2007), pp. 537–556. doi: 10.1016/j.jcp.2007.08.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.