206
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Locally adaptive total variation for removing mixed Gaussian–impulse noise

Pages 298-316 | Received 11 May 2017, Accepted 27 Jan 2018, Published online: 23 Feb 2018

References

  • M. Alkämper and A. Langer, Using DUNE-ACFem for non-smooth minimization of bounded variation functions, Arch. Numer. Softw. 5 (2017), pp. 3–19.
  • A. Almansa, C. Ballester, V. Caselles, and G. Haro, A TV based restoration model with local constraints, J. Sci. Comput. 34 (2008), pp. 209–236. DOI:10.1007/s10915-007-9160-x. MR 2377617 (2009d:94009).
  • L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000, MR 1857292 (2003a:49002).
  • M. Bertalmío, V. Caselles, B. Rougé, and A. Solé, TV based image restoration with local constraints, J. Sci. Comput. 19 (2003), pp. 95–122. doi: 10.1023/A:1025391506181
  • A.C. Bovik, Handbook of Image and Video Processing, Academic Press, New York, NY, 2010.
  • K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci. 3 (2010), pp. 492–526. DOI:10.1137/090769521. MR 2736018 (2011k:49029).
  • J.F. Cai, R.H. Chan, and M. Nikolova, Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Probl. Imag. 2 (2008), pp. 187–204. doi: 10.3934/ipi.2008.2.187
  • L. Calatroni, J.C.D.L Reyes, and C.B. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM. J. Imag. Sci. 10 (2017), pp. 1196–1233. doi: 10.1137/16M1101684
  • V.C. Cao, J.C.D.L Reyes, and C.B. Schönlieb, Learning optimal spatially-dependent regularization parameters in total variation image restoration, Inverse Problems 33 (2017), p. 074005.
  • A. Chambolle and T. Pock, A first-order primal–dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis. 40 (2011), pp. 120–145. doi: 10.1007/s10851-010-0251-1
  • D.Q. Chen and L.Z. Cheng, Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring, Inverse Problems 28 (2011), pp. 015004.
  • J. Delon and A. Desolneux, A patch-based approach for removing impulse or mixed Gaussian-impulse noise, SIAM J. Imag. Sci. 6 (2013), pp. 1140–1174. DOI:10.1137/120885000. MR 3071403.
  • B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu, Wavelet frame based blind image inpainting, Appl. Comput. Harmon. Anal. 32 (2012), pp. 268–279. doi: 10.1016/j.acha.2011.06.001
  • Y. Dong, M. Hintermüller, and M.M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vision 40 (2011), pp. 82–104. DOI:10.1007/s10851-010-0248-9. MR 2782120.
  • R. Garnett, T. Huegerich, C. Chui, and W. He, A universal noise removal algorithm with an impulse detector, IEEE. Trans. Image Process. 14 (2005), pp. 1747–1754. doi: 10.1109/TIP.2005.857261
  • O. Ghita and P.F. Whelan, A new GVF-based image enhancement formulation for use in the presence of mixed noise, Pattern Recognit. 43 (2010), pp. 2646–2658. doi: 10.1016/j.patcog.2010.02.023
  • G. Gilboa, N. Sochen, and Y.Y. Zeevi, Texture preserving variational denoising using an adaptive fidelity term, Proceedings of the IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision (VLsM '03), Nice, France, 2003.
  • E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Vol. 80, Birkhäuser Verlag, Basel, 1984. DOI:10.1007/978-1-4684-9486-0. MR 775682 (87a:58041).
  • Z. Gong, Z. Shen, and K.C. Toh, Image restoration with mixed or unknown noises, Multiscale Model. Simul. 12 (2014), pp. 458–487. doi: 10.1137/130904533
  • M. Hintermüller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1/L2 data-fidelity in image processing, SIAM J. Imag. Sci. 6 (2013), pp. 2134–2173. DOI:10.1137/120894130. MR 3121758.
  • M. Hintermüller and A. Langer, Adaptive regularization for Parseval frames in image processing, SFB-Report No. 2014-014, p. 12, 2014
  • M. Hintermüller and A. Langer, Non-overlapping domain decomposition methods for dual total variation based image denoising, J. Sci. Comput. 62 (2015), pp. 456–481. doi: 10.1007/s10915-014-9863-8
  • M. Hintermüller and C.N. Rautenberg, Optimal selection of the regularization function in a weighted total variation model. Part I: Modelling and theory, J. Math. Imag. Vis. 59 (2017), pp. 498–514. doi: 10.1007/s10851-017-0744-2
  • M. Hintermüller, C.N. Rautenberg, T. Wu, and A. Langer, Optimal selection of the regularization function in a weighted total variation model. Part II: Algorithm, its analysis and numerical tests, J. Math. Imag. Vis. 59 (2017), pp. 515–533. doi: 10.1007/s10851-017-0736-2
  • M. Hintermüller and M.M. Rincon-Camacho, Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration, Inverse Problems 26 (2010), pp. 085005–085030. DOI:10.1088/0266-5611/26/8/085005. MR 2658822 (2011d:65052).
  • Y.M. Huang, M.K. Ng, and Y.W. Wen, Fast image restoration methods for impulse and Gaussian noises removal, IEEE. Signal Process. Lett. 16 (2009), pp. 457–460. doi: 10.1109/LSP.2009.2016835
  • A. Langer, Automated parameter selection for total variation minimization in image restoration, J. Math. Imag. Vis. 57 (2017), pp. 239–268. DOI: 10.1007/s10851-016-0676-2
  • A. Langer, Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise, Inverse Problems 33 (2017), p. 074002. doi: 10.1088/1361-6420/33/7/074002
  • B. Li, Q. Liu, J. Xu, and X. Luo, A new method for removing mixed noises, Sci. China Inform. Sci. 54 (2011), pp. 51–59. doi: 10.1007/s11432-010-4128-0
  • F. Li, M.K. Ng, and C. Shen, Multiplicative noise removal with spatially varying regularization parameters, SIAM J. Imag. Sci. 3 (2010), pp. 1–20. DOI:10.1137/090748421. MR 2609456 (2011g:65066).
  • F. Li and T. Zeng, Image restoration via tight frame regularization and local constraints, J. Sci. Comput. 57 (2013), pp. 349–371. doi: 10.1007/s10915-013-9709-9
  • Y.R. Li, L. Shen, D.Q. Dai, and B.W. Suter, Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise, IEEE. Trans. Image Process. 20 (2011), pp. 1822–1837. doi: 10.1109/TIP.2010.2103950
  • J. Liu, X.C. Tai, H. Huang, and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE. Trans. Image Process. 22 (2013), pp. 1108–1120. doi: 10.1109/TIP.2012.2227766
  • R.W. Liu, L. Shi, S.C.H. Yu, and D. Wang, Box-constrained second-order total generalized variation minimization with a combined L1,2 data-fidelity term for image reconstruction, J. Electron. Imag. 24 (2015), pp. 033026–033026.
  • E. López-Rubio, Restoration of images corrupted by Gaussian and uniform impulsive noise, Pattern Recognit. 43 (2010), pp. 1835–1846. doi: 10.1016/j.patcog.2009.11.017
  • S. Peng and L. Lucke, Fuzzy filtering for mixed noise removal during image processing, Proceedings of the Third IEEE Conference on Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence. IEEE, New York, 1994, pp. 89–93.
  • P. Rodríguez, R. Rojas, and B. Wohlberg, Mixed Gaussian-impulse noise image restoration via total variation, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, New York, 2012, pp. 1077–1080.
  • Y. Shen, B. Han, and E. Braverman, Removal of mixed Gaussian and impulse noise using directional tensor product complex tight framelets, J. Math. Imag. Vis. 54 (2016), pp. 64–77. doi: 10.1007/s10851-015-0589-5
  • D.M. Strong, P. Blomgren, and T.F. Chan, Spatially adaptive local-feature-driven total variation minimizing image restoration, Optical Science, Engineering and Instrumentation '97, Statistical and Stochastic Methods in Image Processing II. Vol. 3167, International Society for Optics and Photonics, San Diego, CA, 1997.
  • Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE. Trans. Image. Process. 13 (2004), pp. 600–612. doi: 10.1109/TIP.2003.819861
  • Y. Xiao, T. Zeng, J. Yu, and M.K. Ng, Restoration of images corrupted by mixed Gaussian-impulse noise via l1 - l0 minimization, Pattern Recognit. 44 (2011), pp. 1708–1720. doi: 10.1016/j.patcog.2011.02.002
  • M. Yan, Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting, SIAM. J. Imag. Sci. 6 (2013), pp. 1227–1245. doi: 10.1137/12087178X
  • J.X. Yang and H.R. Wu, Mixed Gaussian and uniform impulse noise analysis using robust estimation for digital images, 16th International Conference on Digital Signal Processing, 2009. IEEE, New York, 2009, pp. 1–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.