282
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Numerical solutions for systems of fractional order differential equations with Bernoulli wavelets

, , &
Pages 317-336 | Received 21 May 2017, Accepted 22 Jan 2018, Published online: 25 Feb 2018

References

  • R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), pp. 299–307. doi: 10.1115/1.3167616
  • L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 2003 (2003), pp. 3413–3442. doi: 10.1155/S0161171203301486
  • J. G. Lu and G. Chen, A note on the fractional-order Chen system, Chaos Solitons Fractals 27 (2006), pp. 685–688. doi: 10.1016/j.chaos.2005.04.037
  • C. Li and G. Chen, Chaos in the fractional order Chen system and its control, Chaos Solitons Fractals 22 (2004), pp. 549–554. doi: 10.1016/j.chaos.2004.02.035
  • D. Cafagna and G. Grassi, On the simplest fractional-order Memristor-based chaotic system, Nonlinear Dyn. 70 (2012), pp. 1185–1197. doi: 10.1007/s11071-012-0522-z
  • M. F. Tolba, A. M. AbdelAty, N. S. Soliman, L. A. Said, A. H. Madian, A. T. Azar and A. G. Radwan, FPGA implementation of two fractional order chaotic systems, Int. J. Electr. Commun. (AEU) 78 (2017), pp. 162–172. doi: 10.1016/j.aeue.2017.04.028
  • K. Diethelm, N.J. Ford and A.D. Freed, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002), pp. 3–22. doi: 10.1023/A:1016592219341
  • J. Huang, Y. Tang and L. Vazquez, Convergence analysis of a block-by-block method for fractional differential equations, Numer. Math. Theory Methods Appl. 5 (2012), pp. 229–241. doi: 10.4208/nmtma.2012.m1038
  • A. Elsaid, Homotopy analysis method for solving a class of fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), pp. 3655–3664. doi: 10.1016/j.cnsns.2010.12.040
  • I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), pp. 674–684. doi: 10.1016/j.cnsns.2007.09.014
  • D.W. Brzezinski and P. Ostalczyk, Numerical calculations accuracy comparison of the Inverse Laplace Transform algorithms for solutions of fractional order differential equations, Nonlinear Dyn. 84 (2016), pp. 65–77. doi: 10.1007/s11071-015-2225-8
  • E. Babolian, A.R. Vahidi and A. Shoja, An efficient method for nonlinear fractional differential equations: Combination of the Adomian decomposition method and Spectral method, Indian J. Pure Appl. Math. 45 (2014), pp. 1017–1028. doi: 10.1007/s13226-014-0102-7
  • C. Li and Y. Wang, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl. 57 (2009), pp. 1672–1681. doi: 10.1016/j.camwa.2009.03.079
  • A. Elsaid, The variational iteration method for solving Riesz fractional partial differential equations, Comput. Math. Appl. 60 (2010), pp. 1940–1947. doi: 10.1016/j.camwa.2010.07.027
  • S. Yang, A. Xiao and H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. Appl. 60 (2010), pp. 2871–2879. doi: 10.1016/j.camwa.2010.09.044
  • K. Aruna and A.S.V. Ravi Kanth, Two-dimensional differential transform method and modified differential transform method for solving nonlinear fractional Klein–Gordon equation, Natl. Acad. Sci. Lett. 37 (2014), pp. 163–171. doi: 10.1007/s40009-013-0209-0
  • J. Liu and G. Hou, Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method, Appl. Math. Comput. 217 (2011), pp. 7001–7008. doi: 10.1016/j.amc.2011.01.111
  • N.H. Sweilam, M.M. Khader and A.M. Nagy, Numerical solution of two-sided space-fractional wave equation using finite difference method, J. Comput. Appl. Math. 235 (2011), pp. 2832–2841. doi: 10.1016/j.cam.2010.12.002
  • T. Allahviranloo, Z. Gouyandeh and A. Armand, Numerical solutions for fractional differential equations by Tau-Collocation method, Appl. Math. Comput. 27 (2015), pp. 979–990.
  • Y.-M. Chen, Y.-Q. Wei, D.-Y. Liu and H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett. 46 (2015), pp. 83–88. doi: 10.1016/j.aml.2015.02.010
  • M. Yi and J. Huang, Wavelets operational matrix method for solving fractional differential equations with variable coefficients, Appl. Math. Comput. 230 (2014), pp. 383–394. doi: 10.1016/j.amc.2013.06.102
  • S. Aljoudi, B. Ahmad, J.J. Nieto and A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals 91 (2016), pp. 39–46. doi: 10.1016/j.chaos.2016.05.005
  • C.-Z. Bai and J.-X. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput. 150 (2004), pp. 611–621.
  • X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett. 22 (2009), pp. 64–69. doi: 10.1016/j.aml.2008.03.001
  • M.P. Lazarevic, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mech. Res. Commun. 33 (2006), pp. 269–279. doi: 10.1016/j.mechrescom.2005.08.010
  • S. Gupta, D. Kumar and J. Singh, Numerical study for systems of fractional differential equations via Laplace transform, J. Egypt. Math. Soc. 23 (2015), pp. 256–262. doi: 10.1016/j.joems.2014.04.003
  • Y. Chen and H.-L. An, Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives, J. Egypt. Math. Soc. 200 (2008), pp. 87–95.
  • E. Keshavarz, Y. Ordokhani and M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model. 38 (2014), pp. 6038–6051. doi: 10.1016/j.apm.2014.04.064
  • P.K. Sahu and S. Saha Ray, A new Bernoulli wavelet method for accurate solutions of nonlinear fuzzy Hammerstein–Volterra delay integral equations, Fuzzy Set. Syst. 309 (2017), pp. 131–144. doi: 10.1016/j.fss.2016.04.004
  • M. Yi, L. Wang and J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel, Appl. Math. Model. 40 (2016), pp. 3422–3437. doi: 10.1016/j.apm.2015.10.009
  • L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 2333–2341. doi: 10.1016/j.cnsns.2011.10.014
  • J.-S. Gu and W.-S. Jiang, The Haar wavelets operational matrix of integration, Int. J. Syst. Sci. 27 (1996), pp. 623–628. doi: 10.1080/00207729608929258
  • L. Wang, Y. Ma and Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput. 227 (2014), pp. 66–76. doi: 10.1016/j.amc.2013.11.004
  • Y.M. Chen, X.N. Han and L.C. Liu, Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci. 97 (2014), pp. 391–405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.