273
Views
5
CrossRef citations to date
0
Altmetric
Original Article

A sixth-order finite difference WENO scheme for Hamilton–Jacobi equations

&
Pages 568-584 | Received 01 Sep 2017, Accepted 25 Feb 2018, Published online: 14 Mar 2018

References

  • R. Abedian, H. Adibi, and M. Dehghan, Symmetrical weighted essentially non-oscillatory-flux limiter schemes for Hamilton-Jacobi equations, Math. Methods Appl. Sci. 38 (2015), pp. 4710–4728. doi: 10.1002/mma.3385
  • R. Borges, M. Carmona, B. Costa, and W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008), pp. 3191–3211. doi: 10.1016/j.jcp.2007.11.038
  • S. Bryson, A. Kurganov, D. Levy, and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton–Jacobi equations, IMA J. Numer. Anal. 25 (2005), pp. 113–138. doi: 10.1093/imanum/drh015
  • S. Bryson and D. Levy, Central schemes for multidimensional Hamilton-Jacobi equations, SIAM. J. Sci. Comput. 25 (2003), pp. 767–791. doi: 10.1137/S1064827501394969
  • S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations, SIAM. J. Numer. Anal. 41 (2003), pp. 1339–1369. doi: 10.1137/S0036142902408404
  • L. Cai, W. Xie, Y. Nie, and J. Feng, High-resolution semi-discrete Hermite central-upwind scheme for multidimensional Hamilton-Jacobi equations, Appl. Numer. Math. 80 (2014), pp. 22–45. doi: 10.1016/j.apnum.2014.02.002
  • Y. Cheng and C.W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations, J. Comput. Phys. 223 (2007), pp. 398–415. doi: 10.1016/j.jcp.2006.09.012
  • Y. Cheng and Z. Wang, A new discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations, J. Comput. Phys. 268 (2014), pp. 134–153. doi: 10.1016/j.jcp.2014.02.041
  • M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc. 277 (1983), pp. 1–42. doi: 10.1090/S0002-9947-1983-0690039-8
  • M.G. Crandall and P.L. Lions, Two approximations of solutions of Hamilton–Jacobi equations, Math. Comput. 43 (1984), pp. 1–19. doi: 10.1090/S0025-5718-1984-0744921-8
  • M. Dehghan and M. Abbaszadeh, The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations, Alexandria Eng. J. (2017). in press.
  • M. Dehghan and R. Jazlanian, A fourth-order central Runge-Kutta scheme for hyperbolic conservation laws, Numer. Methods Partial. Differ. Equ. 26 (2010), pp. 1675–1692.
  • M. Dehghan and R. Jazlanian, A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws, Comput. Phys. Commun. 182 (2011), pp. 1284–1294. doi: 10.1016/j.cpc.2011.03.001
  • M. Dehghan and R. Jazlanian, On the total variation of a third-order semi-discrete central scheme for 1D conservation laws, J. Vib. Control 17 (2011), pp. 1348–1358. doi: 10.1177/1077546310378870
  • F. Gallerano, G. Cannata, and F. Lasaponara, A new numerical model for simulations of wave transformation, breaking and long-shore currents in complex coastal regions, Int. J. Numer. Methods Fluids 80 (2016), pp. 571–613. doi: 10.1002/fld.4164
  • S. Gottlieb, D.I. Ketcheson, and C.W. Shu, High order strong stability preserving time discretizations, J. Sci. Comput. 38 (2009), pp. 251–289. doi: 10.1007/s10915-008-9239-z
  • C. Hu and C.W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM. J. Sci. Comput. 21 (1999), pp. 666–690. doi: 10.1137/S1064827598337282
  • X.Y. Hu, Q. Wang, and N.A. Adams, An adaptive central-upwind weighted essentially non-oscillatory scheme, J. Comput. Phys. 229 (2010), pp. 8952–8965. doi: 10.1016/j.jcp.2010.08.019
  • C. Huang, WENO scheme with new smoothness indicator for Hamilton–Jacobi equation, Appl. Math. Comput. 290 (2016), pp. 21–32.
  • G.S. Jiang and D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM. J. Sci. Comput. 21 (2000), pp. 2126–2143. doi: 10.1137/S106482759732455X
  • S. Jin and Z. Xin, Numerical passage from systems of conservation laws to Hamilton–Jacobi equations, and relaxation schemes, SIAM. J. Numer. Anal. 35 (1998), pp. 2385–2404. doi: 10.1137/S0036142996314366
  • K.H. Karlsen and N.H. Risebro, Unconditionally stable methods for Hamilton–Jacobi equations, J. Comput. Phys. 180 (2002), pp. 710–735. doi: 10.1006/jcph.2002.7113
  • A. Kurganov and E. Tadmor, New high-resolution semi-discrete central schemes for Hamilton–Jacobi equations, J.Comput. Phys. 160 (2000), pp. 720–742. doi: 10.1006/jcph.2000.6485
  • D. Levy, S. Nayak, C. Shu, and Y. Zhang, Central WENO schemes for Hamilton–Jacobi equations on triangular meshes, SIAM. J. Sci. Comput. 28 (2006), pp. 2229–2247. doi: 10.1137/040612002
  • D. Levy, G. Puppo, and G. Russo, A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws, SIAM. J. Sci. Comput. 24 (2002), pp. 480–506. doi: 10.1137/S1064827501385852
  • F. Li and S. Yakovlev, A central discontinuous Galerkin method for Hamilton–Jacobi equations, J. Sci. Comput. 45 (2010), pp. 404–428. doi: 10.1007/s10915-009-9340-y
  • C.T. Lin and E. Tadmor, High-resolution nonoscillatory central schemes for Hamilton–Jacobi equations, SIAM. J. Sci. Comput. 21 (2000), pp. 2163–2186. doi: 10.1137/S1064827598344856
  • S. Osher and C.W. Shu, High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations, SIAM. J. Numer. Anal. 28 (1991), pp. 907–922. doi: 10.1137/0728049
  • J. Qiu and C.W. Shu, Hermite WENO schemes for Hamilton–Jacobi equations, J. Comput. Phys. 204 (2005), pp. 82–99. doi: 10.1016/j.jcp.2004.10.003
  • J. Shi, C. Hu, and C.W. Shu, A technique of treating negative weights in WENO schemes, J. Comput. Phys. 175 (2002), pp. 108–127. doi: 10.1006/jcph.2001.6892
  • C.W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev. 51 (2009), pp. 82–126. doi: 10.1137/070679065
  • C.W. Shu, High order WENO and DG methods for time-dependent convection-dominated PDEs, J. Comput. Phys. 316 (2016), pp. 598–613. doi: 10.1016/j.jcp.2016.04.030
  • P.E. Souganidis, Approximation schemes for viscosity solutions of Hamilton–Jacobi equations, J. Differ. Equ. 59 (1985), pp. 1–43. doi: 10.1016/0022-0396(85)90136-6
  • B.A. Steve and D. Levy, High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations, J. Comput. Phys. 189 (2003), pp. 63–87. doi: 10.1016/S0021-9991(03)00201-8
  • J. Yan and S. Osher, A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations, J.Comput. Phys. 230 (2011), pp. 232–244. doi: 10.1016/j.jcp.2010.09.022
  • Y.T. Zhang and C.W. Shu, High-order WENO schemes for Hamilton–Jacobi equations on triangular meshes, SIAM. J. Sci. Comput. 24 (2003), pp. 1005–1030. doi: 10.1137/S1064827501396798
  • Y.T. Zhang, H.K. Zhao, and J. Qian, High order fast sweeping methods for static Hamilton–Jacobi equations, J. Sci. Comput. 29 (2006), pp. 25–56. doi: 10.1007/s10915-005-9014-3
  • F. Zheng, C.W. Shu, and J. Qiu, Finite difference Hermite WENO schemes for the Hamilton–Jacobi equations, J.Comput. Phys. 337 (2017), pp. 27–41. doi: 10.1016/j.jcp.2017.02.033
  • J. Zhu and J. Qiu, Hermite WENO schemes for Hamilton–Jacobi equations on unstructured meshes, J. Comput. Phys. 254 (2013), pp. 76–92. doi: 10.1016/j.jcp.2013.07.030
  • J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for Hamilton–Jacobi equations, Numer. Methods. Partial. Differ. Equ. 33 (2017), pp. 1095–1113. doi: 10.1002/num.22133

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.