143
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Gauss-Lobatto-Legendre-Birkhoff pseudospectral scheme for the time fractional reaction–diffusion equation with Neumann boundary conditions

ORCID Icon, , &
Pages 362-378 | Received 27 Apr 2017, Accepted 25 Feb 2018, Published online: 21 Mar 2018

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438.
  • M. Behroozifar and A. Sazmand, An approximate solution based on Jacobi polynomials for time-fractional convection-diffusion equation, Appl. Math. Comput. 296 (2017), pp. 1–17.
  • C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions, eds., Techniques of Scientific Computing, Vol. 5, Elsevier, Amsterdam, 1997.
  • H. Chen, S.J. Lü, and W.P. Chen, Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel, Comput. Math. Appl. 71 (2016), pp. 1818–1830.
  • M.R. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math. 255 (2014), pp. 404–416.
  • W.H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal. 47(1) (2008), pp. 204–226.
  • A. Ezzirani and A. Guessab, A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations, Math. Comput. 68(225) (1999), pp. 217–249.
  • A.D. Fitt, A.R.H. Goodwin, K.A. Ronaldson, and W.A. Wakeham, A fractional differential equation for a MEMS viscometer used in the oil industry, J. Comput. Appl. Math. 229 (2009), pp. 373–381.
  • N.J. Ford, J.Y. Xiao, and Y.B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal. 14(3) (2011), pp. 454–474.
  • G.H. Gao and Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), pp. 586–595.
  • G.H. Gao and H.W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys. 298 (2015), pp. 520–538.
  • J.F. Huang, Y.F. Tang, L. Vázquez, and J.Y. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64 (2013), pp. 707–720.
  • H. Jiang, F. Liu, I. Turner, and K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl. 64 (2012), pp. 3377–3388.
  • B.T. Jin, R. Lazarov, Y.K. Liu, and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys. 281 (2015), pp. 825–843.
  • X.H. Li and P.J.Y. Wong, A higher order non-polynomial spline method for fractional sub-diffusion problems, J. Comput. Phys. 328 (2017), pp. 46–65.
  • X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal. 47(3) (2009), pp. 2108–2131.
  • Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552.
  • Y.M. Liu, Y.B. Yan, and M. Khan, Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations, Appl. Numer. Math. 115 (2017), pp. 200–213.
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17(3) (1986), pp. 704–719.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77.
  • A. Mohebbi, M. Abbaszadeh, and M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys. 240 (2013), pp. 36–48.
  • S.T. Mohyud-Din, A. Ali, and B. Bin-Mohsin, On biological population model of fractional order, Int. J. Biomath. 9(5) (2016), p. 1650070. (13 pages).
  • J.C. Ren, Z.Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys. 232 (2013), pp. 456–467.
  • E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance, Physica A 284 (2000), pp. 376–284.
  • J. Shen, Efficient spectral-Gaussian method I. Direct solvers for the second and fourth order equations using Legendre polynomials, SIAM J. Sci. Comput. 15(6) (1994), pp. 1489–1505.
  • Z.Z. Sun and X.N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), pp. 193–209.
  • L.L. Wang and B.Y. Guo, Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature, J. Approx. Theory 161 (2009), pp. 142–173.
  • Y. Xu, Quasi-orthogonal polynomials, quadrature, and interpolation, J. Math. Anal. Appl. 182 (1994), pp. 779–799.
  • Q.W. Xu and J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal. 52(1) (2014), pp. 405–423.
  • X.H. Yang, H.X. Zhang, and D. Xu, Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys. 256 (2014), pp. 824–837.
  • M. Yaseen, M. Abbas, A.I. Ismail, and T. Nazir, A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations, Appl. Math. Comput. 293 (2017), pp. 311–319.
  • Y.N. Zhang, Z.Z. Sun, and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014), pp. 195–210.
  • X. Zhao and Z.Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys. 230 (2011), pp. 6061–6074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.