233
Views
5
CrossRef citations to date
0
Altmetric
Original Article

A block-centred finite difference method for the distributed-order differential equation with Neumann boundary condition

&
Pages 622-639 | Received 03 Aug 2017, Accepted 09 Mar 2018, Published online: 08 May 2018

References

  • T. Arbogast, M.F. Wheeler, and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal. 34 (1997), pp. 828–852.
  • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation, Phys. Rev. E 61 (2000), pp. 132–138.
  • D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert, Application of a fractional advection–dispersion equation, Water Resour. Res. 36 (2000), pp. 1403–1412.
  • A.V. Chechkin, J. Klafter, and I.M. Sokolov, Fractional Fokker–Planck equation for ultraslow kinetics, EPL (Europhys. Lett.) 63 (2003), pp. 326–332.
  • C.M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys. 227 (2007), pp. 886–897.
  • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 (2009), pp. 7792–7804.
  • S. Das, W. Liao, and A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation, J. Comput. Appl. Math. 258 (2014), pp. 151–167.
  • K. Diethelm and N.J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math. 225 (2009), pp. 96–104.
  • J.T. Edwards, N.J. Ford, and A.C. Simpson, The numerical solution of linear multi-term fractional differential equations: Systems of equations, J. Comput. Appl. Math. 148 (2002), pp. 401–418.
  • V.S. Erturk, S. Momani, and Z. Odibat, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), pp. 1642–1654.
  • J.D. Faires and R. Burden, Numerical methods, 2nd ed., Brooks/Cole Publishing Company, Pacific Grove, CA, 1998.
  • N.J. Ford, M.L. Morgado, and M. Rebelo, A numerical method for the distributed order time-fractional diffusion equation, ICFDA'14 International Conference on Fractional Differentiation and its Applications, Catania, Italy, 2014.
  • N.J. Ford, M.L. Morgado, and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal. 44 (2015), pp. 289–305.
  • G.H. Gao, H.W. Sun, and Z.Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), pp. 337–359.
  • G.H. Gao and Z.Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl. 69 (2015), pp. 926–948.
  • G.H. Gao and Z.Z. Sun, Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations, Numer. Methods Partial Differential Equations 32 (2016), pp. 591–615.
  • B.I. Henry, T.A.M. Langlands, and S.L. Wearne, Fractional cable models for spiny neuronal dendrites, Phys. Rev. Lett. 100 (2008), p. 128103.
  • X. Hu, F. Liu, I. Turner, and V. Anh, An implicit numerical method of a new time distributed-order and two-sided space-fractional advection–dispersion equation, Numer. Algorithms 72 (2015), pp. 1–15.
  • B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput. 38 (2016), pp. A146–A170.
  • A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl. 340 (2008), pp. 252–281.
  • T.A.M. Langlands, Solution of a modified fractional diffusion equation, Phys. A: Stat. Mech. Appl. 367 (2006), pp. 136–144.
  • T. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736.
  • X. Li and H. Rui, A two-grid block-centered finite difference method for nonlinear non-Fickian flow model, Appl. Math. Comput. 281 (2016), pp. 300–313.
  • W. Liao, A compact high-order finite difference method for unsteady convection–diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech. 13 (2012), pp. 135–145.
  • W. Liao, A high-order ADI finite difference scheme for a 3D reaction–diffusion equation with Neumann boundary condition, Numer. Methods Partial Differential Equations 29 (2013), pp. 778–798.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552.
  • F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker–Planck equation, J. Comput. Appl. Math. 166 (2004), pp. 209–219.
  • F. Liu, V.V. Anh, I. Turner, and P. Zhuang, Time fractional advection–dispersion equation, J. Appl. Math. Comput. 13 (2003), pp. 233–245.
  • Q. Liu, F. Liu, I. Turner, and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model. 35 (2011), pp. 4103–4116.
  • W. Liu, J. Cui, and J. Xin, A block-centered finite difference method for an unsteady asymptotic coupled model in fractured media aquifer system, J. Comput. Appl. Math. 337 (2018), pp. 319–340.
  • Y. Liu, Y. Du, H. Li, S. He, and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem, Comput. Math. Appl. 70 (2015), pp. 573–591.
  • Z. Liu and X. Li, A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation, Comput. Methods Appl. Mech. Eng. 308 (2016), pp. 330–348.
  • F. Liu, C. Yang, and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math. 231 (2009), pp. 160–176.
  • J.C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal. 27 (1990), pp. 20–31.
  • C.F. Lorenzo and T.T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn. 29 (2002), pp. 57–98.
  • R. Magin, X. Feng, and D. Baleanu, Solving the fractional order Bloch equation, Concepts Magn. Reson. Part A Bridg. Educ. Res. 34 (2009), pp. 16–23.
  • F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput. 187 (2007), pp. 295–305.
  • R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), pp. 107–125.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77.
  • M.L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction–diffusion equations, J.Comput. Appl. Math. 275 (2015), pp. 216–227.
  • M. Raberto, E. Scalas, and F. Mainardi, Waiting-times and returns in high-frequency financial data: An empirical study, Phys. A 314 (2002), pp. 749–755.
  • P.A. Raviart and J.M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., Springer, Berlin, 1977, pp. 292–315.
  • H. Rui and W. Liu, A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media, SIAM J. Numer. Anal. 53 (2015), pp. 1941–1962.
  • H. Rui and H. Pan, A block-centered finite difference method for the Darcy–Forchheimer model, SIAM J. Numer. Anal. 50 (2012), pp. 2612–2631.
  • H. Rui and H. Pan, Block-centered finite difference methods for parabolic equation with time-dependent coefficient, Jpn. J. Ind. Appl. Math. 30 (2013), pp. 681–699.
  • A.I. Saichev and G.M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos Interd. J. Nonlinear Sci. 7 (1997), pp. 753–764.
  • E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000), pp. 376–384.
  • Y.G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theoret. Probab. Appl. 27 (1983), pp. 256–268.
  • I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein's Brownian motion, Chaos: Interd. J. Nonlinear Sci. 15 (2005), p. 026103.
  • Z.Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), pp. 193–209.
  • W. Wyss, The fractional Black–Scholes equation, Fract. Calc. Appl. Anal. 3 (2000), pp. 51–62.
  • H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys. 298 (2015), pp. 652–660.
  • H. Ye, F. Liu, V. Anh, and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math. 80 (2015), pp. 825–838.
  • S.B. Yuste, L. Acedo, and K. Lindenberg, Reaction front in an a+b→c reaction-subdiffusion process, Phys. Rev. E 69 (2004), p. 036126.
  • S.B. Yuste and K. Lindenberg, Subdiffusion-limited a+a reactions, Phys. Rev. Lett. 87 (2001), pp. 118301.
  • F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), pp. A2976–A3000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.