111
Views
1
CrossRef citations to date
0
Altmetric
General articles

Multi-step Nyström methods for general second-order initial value problems y″(t) = f(t,y(t), y′(t))

, &
Pages 1254-1277 | Received 17 Mar 2017, Accepted 07 Sep 2017, Published online: 16 May 2018

References

  • V.A. Avdyushev, Special perturbation theory methods in celestial mechanics. I. Principles for the construction and substantiation of the application, Russian Phys. J. 49 (2006), pp. 1344–1353. doi: 10.1007/s11182-006-0264-9
  • J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer, New York, 1989.
  • K. Burrage, High order algebraically stable multistep Runge–Kutta methods, SIAM J. Numer. Anal. 24 (1987), pp. 106–115. doi: 10.1137/0724009
  • K. Burrage, Order properties of implicit multivalue methods for ordinary differential equations, IMA J. Numer. Anal. 8 (1988), pp. 43–69. doi: 10.1093/imanum/8.1.43
  • J.C. Butcher, An algebraic theory of integration methods, Math. Comput. 26 (1972), pp. 79–106. doi: 10.1090/S0025-5718-1972-0305608-0
  • J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd ed., Wiley, Chichester, 2008.
  • J.P. Coleman, Order conditions for a class of two-step methods for y′′=f(x,y), IMA J. Numer. Anal. 23 (2003), pp. 197–220. doi: 10.1093/imanum/23.2.197
  • G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT 18 (1978), pp. 133–136. doi: 10.1007/BF01931689
  • R. D'Ambrosio, E. Esposito, and B. Paternoster, General linear methods for y′′=f(y(t)), Numer. Algorithms 61 (2012), pp. 331–349. doi: 10.1007/s11075-012-9637-z
  • R. D'Ambrosio, G. De Martino, and B. Paternoster, Order conditions for general linear Nyström methods, Numer. Algorithms 65 (2014), pp. 579–595. doi: 10.1007/s11075-013-9819-3
  • J.M. Franco, Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators, Comput. Phys. Comm. 147 (2002), pp. 770–787. doi: 10.1016/S0010-4655(02)00460-5
  • J.M. Franco, New methods for oscillatory systems based on ARKN methods, Appl. Numer. Math. 56 (2006), pp. 1040–1053. doi: 10.1016/j.apnum.2005.09.005
  • E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer-Verlag, Berlin, 2002.
  • E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, 2006.
  • J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976), pp. 189–202. doi: 10.1093/imamat/18.2.189
  • J.Y. Li and X.F. Wang, Multi-step hybrid methods for special second-order differential equations y′′(t)=f(t,y(t)), Numer. Algorithms 73 (2016), pp. 711–733. doi: 10.1007/s11075-016-0114-y
  • J.Y. Li and X.F. Wang, Multi-step Runge–Kutta–Nyström methods for special 230 second-order initial value problems, Appl. Numer. Math. 113 (2017), pp. 54–70. doi: 10.1016/j.apnum.2016.11.002
  • J.Y. Li, X.F. Wang, and M. Lu, A class of linear multi-step method adapted to general oscillatory second-order initial value problems, J. Appl. Math. Comput. 56 (2018), pp. 561–591. doi: 10.1007/s12190-017-1087-2
  • J.I. Ramos and C.M. García-López, Piecewise-linearized methods for initial-value problems, Appl. Math. Comput. 82 (1997), pp. 459–467.
  • H. Ramos, G. Singh, V. Kanwar, and S. Bhatia, An efficient variable step-size rational Falkner-type method for solving the special second-order IVP, Appl. Math. Comput. 291 (2016), pp. 39–51.
  • A. Sesappa Rai and U. Ananthakrishnaiah, Obrechkoff methods having additional parameters for general second-order differential equations, J. Comput. Appl. Math. 79 (1997), pp. 167–182. doi: 10.1016/S0377-0427(96)00132-X
  • Ch. Tsitouras, On fitted modifications of Runge–Kutta–Nystrom pairs, Appl. Math. Comput. 232 (2014), pp. 416–423.
  • Ch. Tsitouras and I.Th. Famelis, Using neural networks for the derivation of Runge–Nutta–Nyström pairs for integration of orbits, New Astronom. 17 (2012), pp. 469–473. doi: 10.1016/j.newast.2011.11.009
  • J. Vigo-Aguiar and H. Ramos, Variable stepsize implementation of multistep methods for y′′=f(x,y), J. Comput. Appl. Math. 192 (2006), pp. 114–131. doi: 10.1016/j.cam.2005.04.043
  • H.F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, Dover Publications Inc., New York, 1965.
  • X. Wu, X. You, and J. Xia, Order conditions for ARKN methods solving oscillatory systems, Comput. Phys. Comm. 180 (2009), pp. 2250–2257. doi: 10.1016/j.cpc.2009.07.011
  • X. Wu, X. You, W. Shi, and B. Wang, ERKN integrators for systems of oscillatory second-order differential equations, Comput. Phys. Comm. 181 (2010), pp. 1873–1887. doi: 10.1016/j.cpc.2010.07.046
  • X. You, J. Zhao, H. Yang, Y. Fang, and X. Wu, Order conditions for RKN methods solving general second-order oscillatory systems, Numer. Algorithms 66 (2014), pp. 147–176. doi: 10.1007/s11075-013-9728-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.