134
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Backward error and condition number analysis for the indefinite linear least squares problem

&
Pages 1603-1622 | Received 02 Mar 2017, Accepted 02 Apr 2018, Published online: 16 May 2018

References

  • J.O. Aasen, On the reduction of a symmetric matrix to tridiagonal form, BIT 11 (1971), pp. 233–242. doi: 10.1007/BF01931804
  • M. Arioli, M. Baboulin, and S. Gratton, A partial condition number for linear least squares problems, SIAM J. Matrix Anal. Appl. 29(2) (2007), pp. 413–433. doi: 10.1137/050643088
  • C. Ashcraft, R.G. Grimes, and J.G. Lewis, Accurate symmetric indefinite linear equation solvers, SIAM J. Matrix Anal. Appl. 20(2) (1999), pp. 513–561. doi: 10.1137/S0895479896296921
  • M. Baboulin and S. Gratton, Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution, BIT Numer. Math. 49(1) (2009), pp. 3–19. doi: 10.1007/s10543-009-0213-4
  • M. Baboulin and S. Gratton, A contribution to the conditioning of the total least-squares problem, SIAM J. Matrix Anal. Appl. 32(3) (2011), pp. 685–699. doi: 10.1137/090777608
  • A. Bojanczyk, N.J. Higham, and H. Patel, The equality constrained indefinite least squares problem: Theory and algorithms, BIT Numer. Math. 43(3) (2003), pp. 505–517. doi: 10.1023/B:BITN.0000007020.58972.07
  • A. Bojanczyk, N.J. Higham, and H. Patel, Solving the indefinite least squares problem by hyperbolic QR factorization, SIAM J. Matrix Anal. Appl. 24(4) (2003), pp. 914–931 (electronic). doi: 10.1137/S0895479802401497
  • J.R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comp. 31(137) (1977), pp. 163–179. doi: 10.1090/S0025-5718-1977-0428694-0
  • J.R. Bunch and B.N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. Numer. Anal. 8 (1971), pp. 639–655. doi: 10.1137/0708060
  • S. Chandrasekaran, M. Gu, and A.H. Sayed, A stable and efficient algorithm for the indefinite linear least-squares problem, SIAM J. Matrix Anal. Appl. 20(2) (1999), pp. 354–362. doi: 10.1137/S0895479896302229
  • X.-W. Chang and D. Titley-Peloquin, Backward perturbation analysis for scaled total least-squares problems, Numer. Linear Algebra Appl. 16(8) (2009), pp. 627–648. doi: 10.1002/nla.640
  • A.J. Cox and N.J. Higham, Backward error bounds for constrained least squares problems, BIT Numer. Math. 39(2) (1999), pp. 210–227. doi: 10.1023/A:1022385611904
  • F. Cucker and H. Diao, Mixed and componentwise condition numbers for rectangular structured matrices, Calcolo 44(2) (2007), pp. 89–115. doi: 10.1007/s10092-007-0130-3
  • F. Cucker, H. Diao, and Y. Wei, On mixed and componentwise condition numbers for Moore–Penrose inverse and linear least squares problems, Math. Comp. 76(258) (2007), pp. 947–964. doi: 10.1090/S0025-5718-06-01913-2
  • J.W. Demmel, On condition numbers and the distance to the nearest ill-posed problem, Numer. Math. 51(3) (1987), pp. 251–289. doi: 10.1007/BF01400115
  • H. Diao and Y. Wei, On Frobenius normwise condition numbers for Moore–Penrose inverse and linear least-squares problems, Numer. Linear Algebra Appl. 14(8) (2007), pp. 603–610. doi: 10.1002/nla.540
  • H.-A. Diao, Condition numbers for a linear function of the solution of the linear least squares problem with equality constraints, Technical Report, Northeast Normal University, 2016.
  • H.-A. Diao, On condition numbers for least squares with quadric inequality constraint, Comput. Math. Appl. 73(4) (2017), pp. 616–627. doi: 10.1016/j.camwa.2016.12.033
  • H.-A. Diao and Y. Sun, Mixed and componentwise condition numbers for a linear function of the solution of the total least squares problem, Linear Algebra Appl. 544 (2018), pp. 1–29. doi: 10.1016/j.laa.2018.01.008
  • H.-A. Diao, L. Liang, and S. Qiao, A condition analysis of the weighted linear least squares problem using dual norms, Linear Multilinear Algebra 66(6) (2018), pp. 1085–1103. doi: 10.1080/03081087.2017.1337059
  • I. Gohberg and I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl. 14(3) (1993), pp. 688–704. doi: 10.1137/0614049
  • A. Graham, Kronecker Products and Matrix Calculus: With Applications, Hasted, New York, 1981.
  • S. Gratton, On the condition number of linear least squares problems in a weighted frobenius norm, BIT Numer. Math. 36(3) (1996), pp. 523–530. doi: 10.1007/BF01731931
  • J.F. Grcar, Optimal sensitivity analysis of linear least squares, Technical report, 2003.
  • J.F. Grcar, M.A. Saunders, and Z. Su, Estimates of optimal backward perturbations for linear least squares problems, 2007. Available at http://www-leland.stanford.edu/group/SOL/reports/SOL-2007-1.pdf.
  • B. Hassibi, A.H. Sayed, and T. Kailath, Linear estimation in Krein spaces – Part I: Theory, IEEE Trans. Autmat. Control 3(2) (1996), pp. 18–33. doi: 10.1109/9.481605
  • N.J. Higham, Computing error bounds for regression problems, in Statistical Analysis of Measurement Error Models and Applications (Arcata, CA, 1989), Contemp. Math. Vol. 112, Amer. Math. Soc., Providence, RI, 1990, pp. 195–208.
  • N.J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, in Mathematics of Computation 1943–1993: A Half-century of Computational Mathematics (Vancouver, BC, 1993), Proc. Sympos. Appl. Math., Vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 49–77.
  • N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, PA, 2002.
  • D.J. Higham and N.J. Higham, Backward error and condition of structured linear systems, SIAM J. Matrix Anal. Appl. 13(1) (1992), pp. 162–175. doi: 10.1137/0613014
  • R. Karlson and B. Waldén, Estimation of optimal backward perturbation bounds for the linear least squares problem, BIT Numer. Math. 37(4) (1997), pp. 862–869. doi: 10.1007/BF02510356
  • H. Li and S. Wang, Partial condition number for the equality constrained linear least squares problem, Calcolo 54 (2017), pp. 1121–1146. doi: 10.1007/s10092-017-0221-8
  • H. Li and S. Wang, On the partial condition numbers for the indefinite least squares problem, Appl. Numer. Math. 123 (2018), pp. 200–220. doi: 10.1016/j.apnum.2017.09.006
  • H. Li, S. Wang, and H. Yang, On mixed and componentwise condition numbers for indefinite least squares problem, Linear Algebra Appl. 448 (2014), pp. 104–129. doi: 10.1016/j.laa.2014.01.030
  • Q. Liu and X. Li, Preconditioned conjugate gradient methods for the solution of indefinite least squares problems, Calcolo 48(3) (2011), pp. 261–271. doi: 10.1007/s10092-011-0039-8
  • Q. Liu and A. Liu, Block SOR methods for the solution of indefinite least squares problems, Calcolo 51(3) (2014), pp. 367–379. doi: 10.1007/s10092-013-0090-8
  • Q. Liu and F. Zhang, Incomplete hyperbolic Gram-Schmidt-based preconditioners for the solution of large indefinite least squares problems, J. Comput. Appl. Math. 250 (2013), pp. 210–216. doi: 10.1016/j.cam.2013.02.016
  • X.-G. Liu and N. Zhao, Linearization estimates of the backward errors for least squares problems, Numer. Linear Algebra Appl. 19(6) (2012), pp. 954–969. doi: 10.1002/nla.827
  • A.N. Malyshev, Optimal backward perturbation bounds for the LSS problem, BIT Numer. Math. 41(2) (2001), pp. 430–432. doi: 10.1023/A:1021954809777
  • A.N. Malyshev, A unified theory of conditioning for linear least squares and Tikhonov regularization solutions, SIAM J. Matrix Anal. Appl. 24(4) (2003), pp. 1186–1196 (electronic). doi: 10.1137/S0895479801389564
  • N. Mastronardi and P. Van Dooren, The antitriangular factorization of symmetric matrices, SIAM J. Matrix Anal. Appl. 34(1) (2013), pp. 173–196. doi: 10.1137/110858860
  • N. Mastronardi and P. Van Dooren, An algorithm for solving the indefinite least squares problem with equality constraints, BIT Numer. Math. 54(1) (2014), pp. 201–218. doi: 10.1007/s10543-013-0452-2
  • J.R. Rice, A theory of condition, SIAM J. Numer. Anal. 3 (1966), pp. 287–310. doi: 10.1137/0703023
  • A.H. Sayed, B. Hassibi, and T. Kailath, Inertia properties of indefinite quadratic forms, IEEE Signal Process. Lett. 3(2) (1996), pp. 57–59. doi: 10.1109/97.484217
  • R.D. Skeel, Scaling for numerical stability in Gaussian elimination, J. ACM 26(3) (1979), pp. 494–526. doi: 10.1145/322139.322148
  • G.W. Stewart, Research, development, and LINPACK, in Mathematical Software, III (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1977), Publ. Math. Res. Center, No. 39, Academic Press, New York, 1977, pp. 1–14.
  • S. Van Huffel and J. Vandewalle, The Total Least Squares Problem, Frontiers in Applied Mathematics, Vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. Computational aspects and analysis, With a foreword by Gene H. Golub.
  • B. Waldén, R. Karlson, and J.G. Sun, Optimal backward perturbation bounds for the linear least squares problem, Numer. Linear Algebra Appl. 2(3) (1995), pp. 271–286. doi: 10.1002/nla.1680020308
  • Q. Wang, Perturbation analysis for generalized indefinite least squares problems, J. East China Norm. Univ. Natur. Sci. Ed. 2009(4) (2009), pp. 47–53.
  • H. Xu, A backward stable hyperbolic QR factorization method for solving indefinite least squares problem, J. Shanghai Univ. 8 (2004), pp. 391–396. doi: 10.1007/s11741-004-0049-8
  • T.-Y. Zhou, On the condition number and backward error analysis for indefinite linear least squares problems, Master's thesis, Northeast Normal University, May 2015, in Chinese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.