190
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Numerical efficiency of some exponential methods for an advection–diffusion equation

ORCID Icon & ORCID Icon
Pages 1005-1029 | Received 06 Feb 2018, Accepted 14 May 2018, Published online: 01 Jun 2018

References

  • K. Baba and M. Tabata, On a conservation upwind finite element scheme for convective diffusion equations, RAIRO-Analyse Numérique 15 (1981), pp. 3–25. doi: 10.1051/m2an/1981150100031
  • G.A. Baker and P.R. Graves-Morris, Padé Approximants, Vol. 59, Cambridge University Press, 1996.
  • C. Bardos, A.Y. Leroux and J.C. Nédélec, First order quasilinear equations with boundary conditions, Commun. Partial Differ. Equ. 4 (1979), pp. 1017–1034. doi: 10.1080/03605307908820117
  • H. Bateman, Some recent researches on the motion of fluids, Mon. Weather Rev. 43 (1915), pp. 163–170. doi: 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
  • T. Beatus, T. Tlusty and R. Bar-Ziv, Burgers shock waves and sound in a 2D microfluidic droplets ensemble, Phys. Rev. Lett. 103 (2009), pp. 114502. doi: 10.1103/PhysRevLett.103.114502
  • M.C. Bhattacharya, An explicit conditionally stable finite difference equation for heat conduction problems, Int. J. Numer. Methods Eng. 21 (1985), pp. 239–265. doi: 10.1002/nme.1620210205
  • M.C. Bhattacharya, Finite-difference solutions of partial differential equations, Commun. Appl. Numer. Methods 6 (1990), pp. 173–184. doi: 10.1002/cnm.1630060303
  • A.G. Bratsos and A.Q.M. Khaliq, A conservative exponential time differencing method for the nonlinear cubic Schrödinger equation, Int. J. Comput. Math. 94 (2017), pp. 230–251. doi: 10.1080/00207160.2015.1101458
  • J.M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, in Selected Papers of JM Burgers, F.T. Nieuwstadt and J.A. Steketee, eds., Springer, Berlin, B1995, pp. 281–334.
  • G. Chamoun, M. Saad and R. Talhouk, Monotone combined edge finite volume–finite element scheme for anisotropic Keller–Segel model, Numer. Methods Partial Differ. Equ. 30 (2014), pp. 1030–1065. doi: 10.1002/num.21858
  • J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951), pp. 225–236. doi: 10.1090/qam/42889
  • D.B. Dix, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal. 27 (1996), pp. 708–724. doi: 10.1137/0527038
  • E. Feireisl, R. Hošek, D. Maltese and A. Novotn`y, Unconditional convergence and error estimates for bounded numerical solutions of the barotropic Navier–Stokes system, Numer. Methods Partial Differ. Equ. 33 (2017), pp. 1208–1223. doi: 10.1002/num.22140
  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.
  • M. Gülsu, A finite difference approach for solution of Burgers equation, Appl. Math. Comput. 175 (2006), pp. 1245–1255.
  • M. Gülsu and T. Öziş, Numerical solution of Burgers' equation with restrictive Taylor approximation, Appl. Math. Comput. 171 (2005), pp. 1192–1200.
  • R.F. Handschuh and T.G. Keith Jr, Applications of an exponential finite-difference technique, Numer. Heat Transf. 22 (1992), pp. 363–378. doi: 10.1080/10407789208944773
  • B. Inan and A.R. Bahadır, An explicit exponential finite difference method for the Burgers' equation, Eur. Int. J. Sci. Technol. 2 (2013), pp. 61–72.
  • B. Inan and A.R. Bahadir, Numerical solution of the one-dimensional Burgers' equation: Implicit and fully implicit exponential finite difference methods, Pramana 81 (2013), pp. 547–556. doi: 10.1007/s12043-013-0599-z
  • B. Inan and A.R. Bahadir, A numerical solution of the Burgers' equation using a Crank–Nicolson exponential finite difference method, J. Math. Comput. Sci. 4 (2014), pp. 849–857. doi: 10.9734/BJMCS/2014/7442
  • O.S. Iyiola, E.O. Asante-Asamani, K.M. Furati, A.Q.M. Khaliq and B.A. Wade, Efficient time discretization scheme for nonlinear space fractional reaction–diffusion equations, Int. J. Comput. Math. 95 (2017), pp. 1274–1291. in press. doi: 10.1080/00207160.2017.1404995
  • E.W. Jenkins, C. Paribello and N.E. Wilson, Discrete mass conservation for porous media saturated flow, Numer. Methods Partial Differ. Equ. 30 (2014), pp. 625–640. doi: 10.1002/num.21831
  • R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation, Comput. Phys. Commun. 183 (2012), pp. 2413–2423. doi: 10.1016/j.cpc.2012.06.009
  • S. Kutluay, A. Bahadir and A. Özdeş, Numerical solution of one-dimensional Burgers equation: Explicit and exact-explicit finite difference methods, J. Comput. Appl. Math. 103 (1999), pp. 251–261. doi: 10.1016/S0377-0427(98)00261-1
  • S. Kutluay, A. Esen and I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math. 167 (2004), pp. 21–33. doi: 10.1016/j.cam.2003.09.043
  • F. Liao and L. Zhang, Numerical analysis of a conservative linear compact difference scheme for the coupled Schrödinger–Boussinesq equations, Int. J. Comput. Math. 95 (2017), pp. 961–978. in press. doi: 10.1080/00207160.2017.1302082
  • J.E. Macías-Díaz, A Mickens-type monotone discretization for bounded travelling-wave solutions of a Burgers–Fisher partial differential equation, J. Differ. Equ. Appl. 19 (2013), pp. 1907–1920. doi: 10.1080/10236198.2013.788647
  • J.E. Macías-Díaz, An integro-differential generalization and dynamically consistent discretizations of some hyperbolic models with nonlinear damping, Int. J. Comput. Math. 92 (2015), pp. 2109–2120. doi: 10.1080/00207160.2014.964696
  • J.E. Macías-Díaz, Positive computational modelling of the dynamics of active and inert biomass with extracellular polymeric substances, J. Differ. Equ. Appl. 21 (2015), pp. 319–335. doi: 10.1080/10236198.2015.1007966
  • J.E. Macías-Díaz, A modified exponential method that preserves structural properties of the solutions of the Burgers–Huxley equation, Int. J. Comput. Math. 95 (2018), pp. 3–19. doi: 10.1080/00207160.2017.1377339
  • J.E. Macías-Díaz, R.E. Landry and A. Puri, A finite-difference scheme in the computational modelling of a coupled substrate-biomass system, Int. J. Comput. Math. 91 (2014), pp. 2199–2214. doi: 10.1080/00207160.2013.870661
  • J.E. Macías-Díaz, F.J. Avelar-González and R.S. Landry, On an efficient implementation and mass boundedness conditions for a discrete Dirichlet problem associated with a nonlinear system of singular partial differential equations, J. Differ. Equ. Appl. 21 (2015), pp. 1021–1043. doi: 10.1080/10236198.2015.1050388
  • R.E. Mickens, Dynamic consistency: A fundamental principle for constructing nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl. 11 (2005), pp. 645–653. doi: 10.1080/10236190412331334527
  • P.J. Olver and C. Shakiban, Applied Linear Algebra, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 2006.
  • W. Qin, D. Ding and X. Ding, Unconditionally positivity and boundedness preserving schemes for a FitzHugh–Nagumo equation, Int. J. Comput. Math. 92 (2015), pp. 2198–2218. doi: 10.1080/00207160.2014.975696
  • M. Ran and C. Zhang, A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator, Int. J. Comput. Math. 93 (2016), pp. 1103–1118. doi: 10.1080/00207160.2015.1016924
  • D.K. Salkuyeh and F.S. Sharafeh, On the numerical solution of the Burgers's equation, Int. J. Comput. Math. 86 (2009), pp. 1334–1344. doi: 10.1080/00207160701864434
  • V. Shapiro, Fourier Series in Several Variables with Applications to Partial Differential Equations, Applied Mathematics and Nonlinear Science, CRC Press, Boca Raton, FL, 2011.
  • M. Yousuf, A.Q.M. Khaliq and R. Liu, Pricing American options under multi-state regime switching with an efficient L-stable method, Int. J. Comput. Math. 92 (2015), pp. 2530–2550. doi: 10.1080/00207160.2015.1071799

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.