238
Views
5
CrossRef citations to date
0
Altmetric
Original Article

A Runge–Kutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives

&
Pages 417-435 | Received 16 Jan 2018, Accepted 04 Jun 2018, Published online: 05 Jul 2018

References

  • T. Aboelenen, Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations, Nonlinear Dynam. 92(2) (2018), pp. 395–413. doi: 10.1007/s11071-018-4063-y
  • T. Aboelenen, A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations, Commun. Nonlinear Sci. Numer. Simul. 54 (2018), pp. 428–452. doi: 10.1016/j.cnsns.2017.06.018
  • T. Aboelenen and H.M. El-Hawary, A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn-Hilliard equation, Comput. Math. Appl. 73(6) (2017), pp. 1197–1217. doi: 10.1016/j.camwa.2016.07.018
  • B. Baeumer, M. Kovács, and H. Sankaranarayanan, Higher order Grünwald approximations of fractional derivatives and fractional powers of operators, Trans. AMS 367 (2015), pp. 813–834. doi: 10.1090/S0002-9947-2014-05887-X
  • A.H. Bhrawy and M.A. Zaky, A method based on the Jacobi Tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. 281 (2015), pp. 876–895. doi: 10.1016/j.jcp.2014.10.060
  • P. Borwein and T. Erleiyi, Polynomials and Polynomial Inequality, Springer-Verlag, New York, 1995.
  • A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction–diffusion equations, Bit Numer. Math. 54(4) (2014), pp. 937–954. doi: 10.1007/s10543-014-0484-2
  • M. Chen and W. Deng, High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights, SIAM J. Sci. Comput. 37(2) (2015), pp. A890–A917. doi: 10.1137/14097207X
  • S. Das and P.K. Gupta, Homotopy analysis method for solving fractional hyperbolic partial differential equations, Int. J. Comput. Math. 88 (2011), pp. 578–588. doi: 10.1080/00207161003631901
  • K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, F. Keil, W. Mackens, H. Voss, and J. Werther, eds., Springer-Verlag, Heidelberg, 1999, pp. 217–224.
  • A. Elsaid, Homotopy analysis method for solving a class of fractional partial differential equations, Commun. Nonlinear Sci. Numer Simul. 16 (2011), pp. 3655–3664. doi: 10.1016/j.cnsns.2010.12.040
  • M. Gasca and T. Sauer, On the history of multivariate polynomial interpolation, J. Comput. Appl. Math. 122 (2000), pp. 23–35. doi: 10.1016/S0377-0427(00)00353-8
  • L. Gaul, P. Klein, and S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991), pp. 81–88. doi: 10.1016/0888-3270(91)90016-X
  • H. Jafari, A. Golbabai, S. Seifi, and K. Sayevand, Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order, Comput. Math. Appl. 59 (2010), pp. 1337–1344. doi: 10.1016/j.camwa.2009.06.020
  • S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model. 37 (2013), pp. 5498–5510. doi: 10.1016/j.apm.2012.10.026
  • H. Khalil and R. Ali Khan, A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation, Comput. Math. Appl. 67 (2014), pp. 1938–1953. doi: 10.1016/j.camwa.2014.03.008
  • A.A. Kilbsa, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • S.L. Lei and H.W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys. 242 (2013), pp. 715–725. doi: 10.1016/j.jcp.2013.02.025
  • M. Li, C. Huang, and Z. Zhang, Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation, Appl. Anal. 97(2) (2018), pp. 295–315. doi: 10.1080/00036811.2016.1262947
  • M. Li, X.M. Gu, C. Huang, M. Fei and G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys. 358 (2018), pp. 256–282. doi: 10.1016/j.jcp.2017.12.044
  • W. Liu and K. Chen, Chaotic behavior in a new fractional-order love triangle system with competition, J. Appl. Anal. Comput. 5(1) (2015), pp. 103–113.
  • J.A.T. Machado, A probabilistic interpretation of the fractional-order differentiation, Fract. Calc. Appl. Anal. 6(1) (2003), pp. 73–80.
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, J. Comput. Appl. Math. 172 (2004), pp. 65–77. doi: 10.1016/j.cam.2004.01.033
  • R. Metzler and J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339(1) (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A Stat. Mech. Appl. 278(1–2) (2000), pp. 107–125. doi: 10.1016/S0378-4371(99)00503-8
  • T. Mitsui and Y. Shinohara, Numerical Analysis of Ordinary Differential Equations and its Applications, World Scientific, Singapore, 1995.
  • S. Momania and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365 (2007), pp. 345–350. doi: 10.1016/j.physleta.2007.01.046
  • Z. Odibat and S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model. 32 (2008), pp. 28–39. doi: 10.1016/j.apm.2006.10.025
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974.
  • I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B.M.V. Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys. 228 (2009), pp. 3137–3153. doi: 10.1016/j.jcp.2009.01.014
  • A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math., 23, Springer-Verlag, Berlin, 1994.
  • H. Qu and X. Liu, A numerical method for solving fractional differential equations by using neural network, Adv. Math. Phys. 2015 (2015), Article ID 439526.
  • M. Roohi, M. P. Aghababa, and A. R. Haghighi, Switching adaptive controllers to 190 control fractional-order complex systems with unknown structure and input nonlinearities, Complexity 21(2) (2015), pp. 211–223. doi: 10.1002/cplx.21598
  • A.I. Saichev and G.M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos 7(4) (1997), pp. 753–764. doi: 10.1063/1.166272
  • J. Shen, T. Tang, and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011.
  • L. Song and H. Zhang, Solving the fractional BBM-Burgers equation using the homotopy analysis method, Chaos Solitons Fractals 40 (2009), pp. 1616–1622. doi: 10.1016/j.chaos.2007.09.042
  • G. Szeg, Orthogonal Polynomials, 4th ed.,American Mathematical Soc., Providence, Rhode Island, 1975.
  • W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84(294) (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • J.G. Wang, Y.H. Ran, and D.L. Wang, On structure preserving and circulant preconditioners for the space fractional coupled nonlinear Schrödinger equations, Numer. Linear Algebra Appl. (2018), p. e2159. doi: 10.1002/nla.2159
  • H. Wang and D.P. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal. 51 (2013), pp. 1088–1107. doi: 10.1137/120892295
  • S.B. Yuste, L. Acedo, and K. Lindenberg, Reaction front in an A + B→C reaction–subdiffusion process, Phys. Rev. E 69(3) (2004), p. 036126.
  • M. Zayernouri and G. Em Karniadakis, Fractional Sturm–Liouville Eigen-problems: Theory and numerical approximation, J. Comput. Phys. 252 (2013), pp. 495–517. doi: 10.1016/j.jcp.2013.06.031
  • M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput. 36 (2014), pp. A40–A62. doi: 10.1137/130933216
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, SIAM J. Numer. Anal. 52(6) (2014), pp. 2599–2622. doi: 10.1137/130934192
  • L. Zhao and W. Deng, A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives, Numer. Methods. Partial Differential Equations 31(5) (2015), pp. 1345–1381. doi: 10.1002/num.21947

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.