1,704
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Conservative finite-difference scheme for the 2D problem of femtosecond laser pulse interaction with kink structure of high absorption in semiconductor

, &
Pages 207-244 | Received 19 Sep 2017, Accepted 01 Jun 2018, Published online: 07 Jul 2018

References

  • G. Bachman and L. Narici, Functional Analysis, Dover Publications, Inc., Mineola, NY, 1998.
  • L. Barletti, L. Brugnano, G. Frasca Caccia, and F. Iavernaro, Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput. 318 (2018), pp. 3–18.
  • O.S. Bondarenko, Mathematical modeling of some problems of optical bistability on the basis of semiconductors, PhD thesis (1997) (in Russian).
  • M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun. 181 (2010), pp. 43–51. doi: 10.1016/j.cpc.2009.08.015
  • J.I. Dıaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, topological methods in nonlinear analysis, J. Juliusz Schauder Center 11 (1998), pp. 59–82.
  • D. Dockery and J.R. Kuttler, An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation, IEEE Trans. Antennas Propag. 44 (1996), pp. 1592–1599. doi: 10.1109/8.546245
  • A. Friedman, Partial Differential Equations of Parabolic Type, Dover Publications, Inc., Mineola, NY, 2008.
  • A. Ghadi and S. Mirzanejhad, Two-photon absorption effect on semiconductor microring resonators, Optik (Stuttg) 126 (2015), pp. 1645–1649. doi: 10.1016/j.ijleo.2015.05.058
  • H.M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, New York, 1985.
  • H.M. Gibbs, S.L. McCall, and T.N.C. Venkatesan, Optical bistable devices – the basic components of all-optical systems, Opt. Eng. 19(4) (1980), pp. 463–468. doi: 10.1117/12.7972544
  • H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, and W. Wiegmann, Optical bistability in semiconductors, Appl. Phys. Lett. 35(6) (1979), pp. 451–453. doi: 10.1063/1.91157
  • W. Huang, M. Ji, Z. Liu, and Y. Yi, Steady states of Fokker–Planck equations: I. Existence, J. Dynam. Differential Equations 27 (3–4) (2015), pp. 721–742.doi: 10.1007/s10884-015-9454-x
  • A. Hurtado, M. Nami, I. D. Henning, M.G. Adams, and L.F. Lester, Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser, Appl. Phys. Lett. 101 (2012), pp. 161117. doi: 10.1063/1.4761473
  • Yu N. Karamzin, A.P. Sukhorukov, and V.A. Trofimov, Mathematical Modeling in Nonlinear Optics, Moscow University Publishing, Moscow, 1989, p. 156 (in Russian).
  • P.K. Kwan and Y.Y. Lu, Computing optical bistability in one-dimensional nonlinear structures, Optics Commun. 238 (2004), pp. 169–175. doi: 10.1016/j.optcom.2004.04.025
  • O. Ladyzhenskaya and N.N. Uraltseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1973 (in Russian).
  • T.I. Lakoba, Instability of the finite-difference split-step method applied to the generalized nonlinear Schrödinger equation. III. External potential and oscillating pulse solutions, Numer. Methods Partial Differential Equations, 33 (2017) pp. 633–650. doi: 10.1002/num.22071
  • A.W. Leung, Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences, Word Scientific Publishing Co. Pvt. Ltd, Hackensack, NJ, 2009.
  • L. Li, Optical bistability in semiconductor lasers under intermodal light injection, J.f Quantum Electronics 32 (1996), pp. 248–256. doi: 10.1109/3.481872
  • J. Loustau, Numerical Differential Equations: Theory and Technique,ode Methods, Finite Differences, Finite Elements and Collocation, WordScientific Publishing Co. Pte. Ltd., New Jersey, 2016.
  • G.I. Marchuk, Methods of Numerical Mathematics, New York, NY, Springer, 1975.
  • J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Application, Springer-Verlag, New York, 2003.
  • R. Nasehi, Ultra-low threshold optical bistability and multi-stability in dielectric slab doped with semiconductor quantum well, Commun. Theor. Phys. 66 (2016), pp. 129–132. doi: 10.1088/0253-6102/66/1/129
  • A.A. Samarskii, Difference Schemes Theory, Nauka, Moscow, 1977 (in Russian).
  • A.A. Samarskii, V.A. Galaktionov, S.P. Kurdumov, and A.P. Mikhailov, The Modes with Aggravation in Problems for the Quasilinear and Parabolic Equations, Nauka, Moscow, 1987 (in Russian).
  • R.A. Smith, Semiconductors, Cambridge Univ. Press, Cambridge, 1978.
  • G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (3) (1968), pp. 506–517. doi: 10.1137/0705041
  • A. Suryanto, E. van Groesen, and M. Hammer, Finite element analysis of optical bistability in one-dimensional nonlinear photonic band gap structures with a defect, J. Nonlinear Optic. Phys. Mater. 12 (2003), pp. 187. doi: 10.1142/S0218863503001328
  • A. Taleei and M. Dehghan, Time-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one- and multi-dimensional nonlinear Schrödinger equations, Comput. Phys. Commun. 185 (2014), pp. 1515–1528. doi: 10.1016/j.cpc.2014.01.013
  • Z. Toroker and M. Horowit, Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings, JOSA B 25 (2008), pp. 448–457. doi: 10.1364/JOSAB.25.000448
  • S. K. Tripathy and S. Swain, Optical bistable switching in semiconductor heterostructure containing a quantum dot layer: The effect of phonons, Optik (Stuttg) 124 (2013), pp. 2723–2726. doi: 10.1016/j.ijleo.2012.08.088
  • V.A. Trofimov, M.M. Loginova, and V.A. Egorenkov, 2D wave structure induced by femtosecond laser pulse in semiconductor, Adv. Optoelectronics Lasers, Kharkov (2013), pp. 296–298.
  • V.A. Trofimov, M.M. Loginova, and V.A. Egorenkov, Developing of 2D helical waves in semiconductor under the action of femtosecond laser pulse and external electric field, Proc. SPIE, 9586 (2015), 95860 K. doi: 10.1117/12.2189308
  • V.A. Trofimov, M.M. Loginova, and V.A. Egorenkov, New two-step iteration process for solution of semiconductor plasma generation problem with arbitrary boundary conditions in 2D case, WIT trans. Model. Simul. 59 (2015), pp. 85–96.
  • V.A. Trofimov, M.M. Loginova, and V.A. Egorenkov, Conservative finite-difference scheme for computer simulation of field optical bistability, Lecture Notes Comput. Sci. 10187 (2017), pp. 682–689. doi: 10.1007/978-3-319-57099-0_78
  • H. Wang, Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput. 170 (2005), pp. 17–35.
  • H. Wang, X. Ma, J. Lu, and W. Gao, An efficient time-splitting compact finite difference method for gross–Pitaevskii equation, Appl. Math. Comput. 297 (2017), pp. 131–144.
  • H. Wang, H.-T. Zhang, and Z.-P. Wang, Optical bistability via incoherent pumping fields in semiconductor quantum wells, Mod Phys Lett B 25 (2011), pp. 97.
  • D. Weaire and J. P. Kermode, Dispersive optical bistability – numerical methods and definitive results, JOSA B 3 (1986), pp. 1706–1711. doi: 10.1364/JOSAB.3.001706
  • J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 23 (1986), pp. 485–507. doi: 10.1137/0723033