281
Views
18
CrossRef citations to date
0
Altmetric
Original Article

On the numerical solution of Fredholm integral equations utilizing the local radial basis function method

ORCID Icon, & ORCID Icon
Pages 1416-1443 | Received 09 Feb 2018, Accepted 08 Jul 2018, Published online: 12 Aug 2018

References

  • M.A. Abdou, A.A. Badr and M.B. Soliman, On a method for solving a two-dimensional nonlinear integral equation of the second kind, J. Comput. Appl. Math. 235(12) (2011), pp. 3589–3598. doi: 10.1016/j.cam.2011.02.016
  • I. Ahmad, R. Siraj-ul-Islam, Q.M. Abdul and M. Khaliq, Local RBF method for multi-dimensional partial differential equations, Comput. Math. Appl. 74(2) (2017), pp. 292–324. doi: 10.1016/j.camwa.2017.04.026
  • B.K. Alpert, A class of bases in l2 for the sparse representation of integral operators, SIAM J. Math. Anal. 24 (1993), pp. 246–262. doi: 10.1137/0524016
  • M.G. Andreasen, Comments on “scattering by conducting rectangular cylinders”, IEEE Trans. Antenna Propag 12(2) (1964), pp. 235–236. doi: 10.1109/TAP.1964.1138184
  • O.A. Arqub, M. Al-Smadi and N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput. 219(17) (2013), pp. 8938–8948.
  • O.A. Arqub and M. Al-Smadi, Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations, Appl. Math. Comput. 243(15) (2014), pp. 911–922.
  • N. Shawagfeh, O.A. Arqub and S.M. Momani, Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method, J. Comput. Anal. Appl. 16(4) (2014), pp. 750–762.
  • P. Assari, H. Adibi and M. Dehghan, A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method, Appl. Math. Model. 37(22) (2013), pp. 9269–9294. doi: 10.1016/j.apm.2013.04.047
  • P. Assari, H. Adibi and M. Dehghan, A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algor. 67(2) (2014), pp. 423–455. doi: 10.1007/s11075-013-9800-1
  • P. Assari, H. Adibi and M. Dehghan, The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis, Appl. Numer. Math. 81 (2014), pp. 76–93. doi: 10.1016/j.apnum.2014.02.013
  • P. Assari and M. Dehghan, A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions, Eur. Phys. J. Plus. 132 (2017), pp. 1–23. doi: 10.1140/epjp/i2017-11467-y
  • P. Assari and M. Dehghan, The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision, Eng. Comput. 33 (2017), pp. 853–870. doi: 10.1007/s00366-017-0502-5
  • P. Assari and M. Dehghan, A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions, Appl. Math. Comput. 315 (2017), pp. 424–444.
  • P. Assari and M. Dehghan, Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method, Appl. Numer. Math. 123 (2018), pp. 137–158. doi: 10.1016/j.apnum.2017.09.002
  • K.E. Atkinson and J. Flores, The discrete collocation method for nonlinear integral equations, IMA J. Numer. Anal. 13 (1993), pp. 195–213. doi: 10.1093/imanum/13.2.195
  • K.E. Atkinson, I. Graham and I. Sloan, Piecewise continuous collocation for integral equations, SIAM J. Numer. Anal. 20 (1983), pp. 172–186. doi: 10.1137/0720012
  • K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.
  • I. Aziza, R. Siraj-ul-Islam and F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math. 272 (2014), pp. 70–80. doi: 10.1016/j.cam.2014.04.027
  • E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear Sci. Numer. Simulat. 16(3) (2011), pp. 1164–1175. doi: 10.1016/j.cnsns.2010.05.029
  • R.P. Banaughf and W. Goldsmith, Diffraction of steady acoustic waves by surfaces of arbitrary shape, J. Aeoust. See. Amer. 35(10) (1963), pp. 1590–1601.
  • R.P. Banaughf and W. Goldsmith, Diffraction of steady elastic waves by surfaces of arbitrary shape, J. Aeoust. See. Amer. 30(4) (1963), pp. 589–597.
  • G. Barnett and L.D. Tongo, TData Structures and Algorithms: Annotated Reference with Examples. DotNetSlackers, 2008.
  • S. Bazm and E. Babolian, Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules, Commun. Nonlinear Sci. Numer. Simulat. 17(3) (2012), pp. 1215–1223. doi: 10.1016/j.cnsns.2011.08.017
  • M.D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.
  • V. Carutasu, Numerical solution of two-dimensional nonlinear Fredholm integral equations of the second kind by spline functions, General Math. 9 (2001), pp. 31–48.
  • W. Chen and W. Lin, Galerkin trigonometric wavelet methods for the natural boundary integral equations, Appl. Math. Comput. 121(1) (2001), pp. 75–92.
  • M. Dehghan and M. Abbaszadeh, The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations, Alexandria Eng. J. 2016, http://dx.doi.org/10.1016/j.aej.2017.02.024.
  • M. Dehghan and M. Abbaszadeh, The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations, Eng. Anal. Bound. Elem. 78 (2017), pp. 49–64. doi: 10.1016/j.enganabound.2017.02.005
  • M. Dehghan and A. Nikpour, Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl. Math. Model. 37(18–19) (2013), pp. 8578–8599. doi: 10.1016/j.apm.2013.03.054
  • R. Farengo, Y.C. Lee and P.N. Guzdar, An electromagnetic integral equation: Application to microtearing modes, Phys. Fluids 26(12) (1983), pp. 3515–3523. doi: 10.1063/1.864112
  • G.E. Fasshauer, Meshfree methods, Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Valencia, 2005.
  • G.E. Fasshauer and J.G. Zhang, On choosing “optimal”; shape parameters for RBF approximation, Numer. Algor. 45(1–4) (2007), pp. 345–368. doi: 10.1007/s11075-007-9072-8
  • R. Franke, Scattered data interpolation: Tests of some methods, Math. Comput 38(157) (1982), pp. 181–200.
  • Z. Fu, W. Chen and L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models, Eng. Anal. Bound. Elem. 57 (2015), pp. 37–46. doi: 10.1016/j.enganabound.2014.09.003
  • Z. Fu, W. Chen and H. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys. 235 (2013), pp. 52–66. doi: 10.1016/j.jcp.2012.10.018
  • I.G. Graham, Collocation methods for two dimensional weakly singular integral equations, J. Austral. Math. Soc. (Series B) 22 (1993), pp. 456–473. doi: 10.1017/S0334270000002800
  • H. Guoqiang and W. Jiong, Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math. 134(1–2) (2001), pp. 259–268. doi: 10.1016/S0377-0427(00)00553-7
  • H. Guoqiang and W. Jiong, Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations, J. Comput. Appl. Math. 139 (2002), pp. 49–63. doi: 10.1016/S0377-0427(01)00390-9
  • P.C. Hansen and T.K. Jensen, Large-scale methods in image deblurring, volume 4699 LNCS of Lect. Notes Comput. Sc., 2007.
  • R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 176(8) (2006), pp. 1905–1915. doi: 10.1029/JB076i008p01905
  • M. Heydari, Z. Avazzadeh, H. Navabpour and G.B. Loghmani, Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem ii. high dimensional problems, Appl. Math. Model. 37 (2013), pp. 432–442. doi: 10.1016/j.apm.2012.03.011
  • Y. Hon, B. Sarler and D. Yun, Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface, Eng. Anal. Bound. Elem. 57 (2015), pp. 2–8. doi: 10.1016/j.enganabound.2014.11.006
  • E.N. Houstis and T.S. Papatheodorou, A collocation method for Fredholm integral equations of the second kind, Math. Comput. 32 (1978), pp. 159–173. doi: 10.1090/S0025-5718-1978-0458967-8
  • E.J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to computational fluid-dynamics – I Surface approximations and partial derivative estimates, Comput. Math. Appl. 19(8–9) (1990), pp. 127–145. doi: 10.1016/0898-1221(90)90270-T
  • G. Kosec and B. Sarler, Solution of a low Prandtl number natural convection benchmark by a local meshless method, Int. J. Numer. Methods Heat Fluid Flow 23(1) (2013), pp. 189–204. doi: 10.1108/09615531311289187
  • C.K. Lee, X. Liu and S.C. Fan, Local multiquadric approximation for solving boundary value problems, Comput. Mech. 30(5–6) (2003), pp. 396–409. doi: 10.1007/s00466-003-0416-5
  • X. Li, Meshless Galerkin algorithms for boundary integral equations with moving least square approximations, Appl. Numer. Math. 61(12) (2011), pp. 1237–1256. doi: 10.1016/j.apnum.2011.08.003
  • X. Li and J. Zhu, A meshless Galerkin method for stokes problems using boundary integral equations, Comput. Methods Appl. Mech. Eng. 61 (2009), pp. 2874–2885. doi: 10.1016/j.cma.2009.04.009
  • A.V. Manzhirov, On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology, J. Appl. Math. Mech. 49(6) (1985), pp. 777–782. doi: 10.1016/0021-8928(85)90016-4
  • B. Mavric and B. Sarler, Local radial basis function collocation method for linear thermoelasticity in two dimensions, Int. J. Numer. Methods Heat Fluid Flow 25(6) (2015), pp. 1488–1510. doi: 10.1108/HFF-11-2014-0359
  • K. Mei and J. Van Bladel, Low-frequency scattering by rectangular cylinders, IEEE Trans. Antenna Propag 11(1) (1963), pp. 52–56. doi: 10.1109/TAP.1963.1137981
  • K. Mei and J.G. van Bladel, Scattering by perfectly-conducting rectangular cylinders, IEEE Trans. Antenna Propag 11(2) (1963), pp. 185–192. doi: 10.1109/TAP.1963.1137996
  • M.V. Mirkin and A.J. Bard, Multidimensional integral equations. Part 1. A new approach to solving microelectrode diffusion problems, J. Electroad. Chem. 323(1–2) (1992), pp. 1–27. doi: 10.1016/0022-0728(92)80001-K
  • D. Mirzaei and M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. 60(3) (2010), pp. 245–262. doi: 10.1016/j.apnum.2009.12.003
  • K. Mramor, R. Vertnik and B. Sarler, Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method, CMES Comput. Model. Eng. Sci. 92(4) (2013), pp. 327–352.
  • D. Occorsio and M.G. Russo, Numerical methods for Fredholm integral equations on the square, Appl. Math. Comput. 218 (2011), pp. 2318–2333.
  • K. Parand and J.A. Rad, Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput. 218(9) (2012), pp. 5292–5309.
  • A. Pedas and G. Vainikko, Product integration for weakly singular integral equations in m dimensional space, in Integral Methods in Science and Engineering, B. Bertram, C. Constanda, A. Struthers, eds., Chapman and Hall/CRC, New York, 2000, pp. 280–285.
  • A. Quarteroni, R. Sacco and F. Saleri, Numerical Analysis for Electromagnetic Integral Equations, Artech House, Boston, 2008.
  • J. Radlow, A two-dimensional singular integral equation of diffraction theory, Bull. Amer. Math. Soc. 70(4) (1964), pp. 596–599. doi: 10.1090/S0002-9904-1964-11209-X
  • D. Rajan and S. Chaudhuri, Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations, IEEE. T. Pattern. Anal. Mach. Intell. 25(9) (2003), pp. 1102–1117. doi: 10.1109/TPAMI.2003.1227986
  • B. Sarler and R. Vertnik, Meshfree explicit local radial basis function collocation method for diffusion problems, Comput. Math. Appl. 51(8) (2006), pp. 1269–1282. doi: 10.1016/j.camwa.2006.04.013
  • S.A. Sarra, A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains, App. Math. Comput. 218(19) (2012), pp. 9853–9865. doi: 10.1016/j.amc.2012.03.062
  • C. Shu, H. Ding and K.S. Yeo, Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 192(7–8) (2003), pp. 941–954. doi: 10.1016/S0045-7825(02)00618-7
  • B. Siraj-Ul-Islam, R. Vertnik and R Sarler, Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations, Appl. Numer. Math. 67 (2013), pp. 136–151. doi: 10.1016/j.apnum.2011.08.009
  • J. Sun, H. Yi and H. Tan, Local radial basis function meshless scheme for vector radiative transfer in participating media with randomly oriented axisymmetric particles, Appl. Opt. 55(6) (2016), pp. 1232–1240. doi: 10.1364/AO.55.001232
  • G.T. Symm, An integral equation method in conformal mapping, Numer. Math. 9(3) (1966), pp. 250–258. doi: 10.1007/BF02162088
  • A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method, J. Comput. Appl. Math. 228(1) (2009), pp. 70–76. doi: 10.1016/j.cam.2008.08.038
  • B. Siraj-Ul-Islam, R Sarler, R. Vertnik and G. Kosec, Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers' equations, Appl. Math. Model. 36(3) (2012), pp. 1148–1160. doi: 10.1016/j.apm.2011.07.050
  • R. Vertnik and B. Sarler, Meshless local radial basis function collocation method for convective–diffusive solid–liquid phase change problems, Int. J. Numer. Methods Heat Fluid Flow 16(5) (2006), pp. 617–640. doi: 10.1108/09615530610669148
  • R. Vertnik and B. Sarler, Local collocation approach for solving turbulent combined forced and natural convection problems, Adv. Appl. Math. Mech. 3(3) (2011), pp. 259–279. doi: 10.4208/aamm.10-10s2-01
  • B. Wang, A local meshless method based on moving least squares and local radial basis functions, Eng. Anal. Bound. Elem. 50 (2015), pp. 395–401. doi: 10.1016/j.enganabound.2014.10.001
  • A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Higher Education Press and Springer Verlag, Heidelberg, 2011.
  • H. Wendland, Scattered Data Approximation, Cambridge University Press, New York. 2005.
  • W Xie and F. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Appl. Numer. Math. 59 (2009), pp. 1709–1719. doi: 10.1016/j.apnum.2009.01.009
  • G. Yao, J. Duo, C.S. Chen and L.H. Shen, Implicit local radial basis function interpolations based on function values, App. Math. Comput. 265 (2015), pp. 91–102. doi: 10.1016/j.amc.2015.04.107
  • G. Yao, B. Sarler and C.S. Chen, A comparison of three explicit local meshless methods using radial basis functions, Eng. Anal. Bound. Elem. 35(3) (2011), pp. 600–609. doi: 10.1016/j.enganabound.2010.06.022
  • D.F. Yun and Y.C. Hon, Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems, Eng. Anal. Bound. Elem. 67 (2016), pp. 63–80. doi: 10.1016/j.enganabound.2016.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.