404
Views
5
CrossRef citations to date
0
Altmetric
Original Article

A fast compact finite difference method for quasilinear time fractional parabolic equation without singular kernel

, , , &
Pages 1444-1460 | Received 25 Aug 2017, Accepted 10 Jul 2018, Published online: 24 Jul 2018

References

  • A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction–diffusion equation, Appl. Math. Comput. 273 (2016), pp. 948–956.
  • A.H. Bhrawy, E.H. Doha, D. Baleanu, and S.S. Ezz-Eldieng, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys. 293 (2015), pp. 142–156. doi: 10.1016/j.jcp.2014.03.039
  • M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1(2) (2015), pp. 1–13.
  • M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl. 2(1) (2016), pp. 1–11. doi: 10.18576/pfda/020101
  • W. Deng, Finite element method for the space and time fractional Fokker–Planck equation, SIAM J. Numer. Anal. 47(1) (2008), pp. 204–226. doi: 10.1137/080714130
  • H. Fu, M.K. Ng, and H. Wang, A divide-and-conquer fast finite difference method for space-time fractional partial differential equation, Comput. Math. Appl. 73(6) (2017), pp. 1233–1242. doi: 10.1016/j.camwa.2016.11.023
  • E.F.D. Goufo, Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equation, Math. Model Anal. 21(2) (2016), pp. 188–198. doi: 10.3846/13926292.2016.1145607
  • C. Ji and Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput. 64(3) (2015), pp. 959–985. doi: 10.1007/s10915-014-9956-4
  • C. Ji, W. Dai, and Z. Sun, Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition, J. Sci. Comput. 75(3) (2017), pp. 1–30.
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21(3) (2015), pp. 650–678. doi: 10.4208/cicp.OA-2016-0136
  • R. Ke, M.K. Ng, and H.W. Sun, A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations, J. Comput. Phys. 303 (2015), pp. 203–211. doi: 10.1016/j.jcp.2015.09.042
  • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47(3) (2009), pp. 2108–2131. doi: 10.1137/080718942
  • H. Liao and Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Meth. Partial Differ. Eq. 26(1) (2010), pp. 37–60. doi: 10.1002/num.20414
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation, Appl. Math. Comput. 191(1) (2007), pp. 12–20.
  • Y. Liu, Y. Du, H. Li, S. He, and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem, Comput. Math. Appl. 70(4) (2015), pp. 573–591. doi: 10.1016/j.camwa.2015.05.015
  • Q. Liu, Y. Gu, P. Zhuang, F. Liu, and Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech. 48(1) (2011), pp. 1–12. doi: 10.1007/s00466-011-0573-x
  • Q. Liu, F. Liu, I. Turner, V. Anh, and Y. Gu, A RBF meshless approach for modeling a fractal mobile/immobile transport model, Appl. Math. Comput. 226(1) (2014), pp. 336–347.
  • Z. Liu, A. Cheng, and X. Li, A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math. 95(2) (2017), pp. 1–16. doi: 10.1080/00207160.2017.1384546
  • J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1(2) (2015), pp. 87–92.
  • X. Lu, H. Pang, and H. Sun, Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations, Numer. Linear Algebr. 22(5) (2015), pp. 866–882. doi: 10.1002/nla.1972
  • A. Mohebbi, M. Abbaszadeh, and M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schr”odinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37(2) (2013), pp. 475–485. doi: 10.1016/j.enganabound.2012.12.002
  • A. Samarskii and V. Andreev, Difference Methods for Elliptic Equations, Nauka, Moscow, 1976.
  • H. Tian, H. Wang, and W. Wang, An efficient collocation method for a non-local diffusion model, Int. J. Numer. Anal. Mod. 10 (2013), pp. 815–825.
  • H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput. 34(5) (2012), pp. A2444–A2458. doi: 10.1137/12086491X
  • H. Wang and N. Du, A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys. 240 (2013), pp. 49–57. doi: 10.1016/j.jcp.2012.07.045
  • H. Wang and N. Du, A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation, J. Comput. Phys. 253 (2013), pp. 50–63. doi: 10.1016/j.jcp.2013.06.040
  • H. Wang and N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, J. Comput. Phys. 258 (2014), pp. 305–318. doi: 10.1016/j.jcp.2013.10.040
  • H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model, J. Comput. Phys. 231(23) (2012), pp. 7730–7738. doi: 10.1016/j.jcp.2012.06.009
  • H. Wang and H. Tian, A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model, Comput. Method Appl. Mech. Energ. 273 (2014), pp. 19–36. doi: 10.1016/j.cma.2014.01.026
  • K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection–diffusion equations, Adv. Water Resour. 34(7) (2011), pp. 810–816. doi: 10.1016/j.advwatres.2010.11.003
  • H. Wang, K. Wang, and T. Sircar, A direct O(Nlog2⁡N) finite difference method for fractional diffusion equations, J. Comput. Phys. 229(21) (2010), pp. 8095–8104. doi: 10.1016/j.jcp.2010.07.011
  • Y. Yan, Z. Sun, and J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys 22(4) (2017), pp. 1028–1048. doi: 10.4208/cicp.OA-2017-0019
  • F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35(6) (2013), pp. A2976–A3000. doi: 10.1137/130910865
  • Y. Zhao, P. Chen, W. Bu, X. Liu, and Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput. 70(1) (2017), pp. 1–22. doi: 10.1007/s10915-016-0240-7
  • M. Zheng, F. Liu, I. Turner, and V. Anh, A novel high order space-time spectral method for the time fractional Fokker–Planck equation, SIAM J. Sci. Comput. 37(2) (2015), pp. A701–A724. doi: 10.1137/140980545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.