103
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Superconvergence analysis of a new linearized MFEM for nonlinear Schrödinger equation

&
Pages 1514-1531 | Received 18 Jan 2018, Accepted 17 Sep 2018, Published online: 02 Oct 2018

References

  • R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press, Amsterdam, 2003.
  • G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal. 13(1) (1993), pp. 115–124. doi: 10.1093/imanum/13.1.115
  • G.D. Akrivis, V.A. Dougalis, and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), pp. 31–53. doi: 10.1007/BF01385769
  • W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50(2) (2012), pp. 492–521. doi: 10.1137/110830800
  • A.G. Bratsos, A modified numerical scheme for the cubic Schrödinger equation, Numer. Methods Partial Differ. Equ. 27 (2011), pp. 608–620. doi: 10.1002/num.20541
  • W.T. Cai, J. Li, and Z.X. Chen, Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation, Adv. Comput. Math. 42(6) (2016), pp. 1311–1330. doi: 10.1007/s10444-016-9463-2
  • W.T. Cai, J. Li, and Z.X. Chen, Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation, J. Comput. Appl. Math. 331 (2018), pp. 23–41. doi: 10.1016/j.cam.2017.09.010
  • Q. Chang, E. Jia, and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys. 148(2) (1999), pp. 397–415. doi: 10.1006/jcph.1998.6120
  • M. Delfour, M. Fortin, and G. Payr, Finite-difference solutions of a non-linear Schrödinger equation, J. Comput. Phys. 44(2) (1981), pp. 277–288. doi: 10.1016/0021-9991(81)90052-8
  • A. Ebaid and S.M. Khaled, New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity, J. Comput. Appl. Math. 235(8) (2011), pp. 1984–1992. doi: 10.1016/j.cam.2010.09.024
  • Y.L. Gao and L.Q. Mei, Implicit-explicit multistep methods for general two-dimensional nonlinear Schrödinger equations, Appl. Numer. Math. 109 (2016), pp. 41–60. doi: 10.1016/j.apnum.2016.06.003
  • J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), pp. 353–384. doi: 10.1137/0727022
  • O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method, Math. Comp. 67(222) (1998), pp. 479–499. doi: 10.1090/S0025-5718-98-00946-6
  • O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal. 36(6) (1999), pp. 1779–1807. doi: 10.1137/S0036142997330111
  • L.X. Li and M.L. Wang, The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear Schrödinger equation, Appl. Math. Comput. 208(2) (2009), pp. 440–445.
  • H. Liao, Z. Sun, and H. Shi, Error estimate of fourth-order compact scheme for linear Schrödinger equations, SIAM J. Numer. Anal. 47(6) (2010), pp. 4381–4401. doi: 10.1137/080714907
  • Q. Lin and J.F. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.
  • Q. Lin and X.Q. Liu, Global superconvergence estimates of finite element method for Schrödinger equation, J. Comput. Math. 16(6) (1998), pp. 521–526.
  • D. Pathria, Exact solutions for a generalized nonlinear Schrödinger equation, Phys. Scripta 39 (1989), pp. 673–679. doi: 10.1088/0031-8949/39/6/001
  • B. Reichel and S. Leble, On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations, Comput. Math. Appl. 55(4) (2008), pp. 745–759. doi: 10.1016/j.camwa.2007.04.038
  • D.Y. Shi and J.J. Wang, Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation, J. Sci. Comput. 72(3) (2017), pp. 1093–1118. doi: 10.1007/s10915-017-0390-2
  • D.Y. Shi and H.J. Yang, A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes, Appl. Math. Lett. 58 (2016), pp. 74–80. doi: 10.1016/j.aml.2016.02.007
  • D.Y. Shi, P.L. Wang, and Y.M. Zhao, Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett. 38 (2014), pp. 129–134. doi: 10.1016/j.aml.2014.07.019
  • D.Y. Shi, X. Liao, and L.L. Wang, Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation, Appl. Math. Comput. 289(20) (2016), pp. 298–310.
  • D.Y. Shi, X Liao, and L.L. Wang, A nonconforming quadrilateral finite element approximation to nonlinear Schrödinger equation, Acta Math. Sci. 37(3) (2017), pp. 584–592. doi: 10.1016/S0252-9602(17)30024-3
  • Z. Sun and D. Zhao, On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl. 59(10) (2010), pp. 3286–3300. doi: 10.1016/j.camwa.2010.03.012
  • V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984.
  • Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation, IMA J Numer. Anal. 11(4) (1991), pp. 509–523. doi: 10.1093/imanum/11.4.509
  • B.X. Wang, On the initial-boundary value problems for nonlinear Schrödinger equations, Adv. Math. (China) 29(5) (2000), pp. 421–424.
  • J.L. Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014), pp. 390–407. doi: 10.1007/s10915-013-9799-4
  • Y. Xu and C.W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys. 205 (2005), pp. 72–77. doi: 10.1016/j.jcp.2004.11.001
  • H. Zhang, Extended Jacobi elliptic function expansion method and its applications, Commun. Nonlinear Sci. Numer. Simul. 12(5) (2007), pp. 627–635. doi: 10.1016/j.cnsns.2005.08.003
  • Z.H. Zhang and X.F. Liu, Global well-posedness of a 2D nonlinear Schrödinger equation, Appl. Math. 18(1) (2003), pp. 63–69.
  • Y.M. Zhao, D.Y. Shi, and F.L. Wang, High accuracy analysis of a new mixed finite element method for nonlinear Schrödinger equation, Math. Numer. Sin. 37(2) (2015), pp. 162–178. (in Chinese).
  • Y.M. Zhao, P. Chen, W.P. Bu, X.T. Liu, and Y.F. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput. 70(1) (2017), pp. 407–428. doi: 10.1007/s10915-015-0152-y
  • L. Zhou, Y. Xu, Z. Zhang, and W. Cao, Superconvergence of local discontinuous Galerkin method for one dimensional linear Schrödinger equations, J. Sci. Comput. 73 (2017), pp. 1290–1315. doi: 10.1007/s10915-017-0362-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.