425
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Discretization of conformable fractional differential equations by a piecewise constant approximation

&
Pages 1849-1860 | Received 26 May 2018, Accepted 08 Oct 2018, Published online: 24 Oct 2018

References

  • S. Abbas, M. Banerjee, and S. Momani, Dynamical analysis of fractional-order modified logistic model, Comput. Math. Appl. 62 (2011), pp. 1098–1104. doi: 10.1016/j.camwa.2011.03.072
  • T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), pp. 57–66. doi: 10.1016/j.cam.2014.10.016
  • R.P. Agarwal, A.M.A. El-Sayed, and S.M. Salman, Fractional-order Chua's system: Discretization, bifurcation and chaos, Adv. Differ. Equ. 2013 (2013). doi:10.1186/1687-1847-2013-320
  • I. Ameen and P. Novati, The solution of fractional order epidemic model by implicit adams methods, Appl. Math. Model. 43 (2017), pp. 78–84. doi: 10.1016/j.apm.2016.10.054
  • A.A.M. Arafa, S.Z. Rida, and M. Khalil, The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model, Appl. Math. Model. 37 (2013), pp. 2189–2196. doi: 10.1016/j.apm.2012.05.002
  • A.A.M. Arafa, S.Z. Rida, and M. Khalil, A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients, Int. J. Biomath. 7 (2014), pp. 1450036. doi: 10.1142/S1793524514500363
  • T.M. Atanackovic and B. Stankovic, An expansion formula for fractional derivatives and its application, Fract. Calc. Appl. Anal. 7 (2004), pp. 365–378.
  • S. Bhalekar and V. Daftardar-Gejji, Fractional ordered Liu system with time-delay, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), pp. 2178–2191. doi: 10.1016/j.cnsns.2009.08.015
  • V. Daftardar-Gejji and H. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, J. Math. Anal. Appl. 301 (2005), pp. 508–518. doi: 10.1016/j.jmaa.2004.07.039
  • Y. Ding and H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Math. Comput. Model. 50 (2009), pp. 386–392. doi: 10.1016/j.mcm.2009.04.019
  • V.D. Djordjevic, J. Jaric, B. Fabry, J.J. Fredberg, and D. Stamenovi, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng. 31 (2003), pp. 692–699. doi: 10.1114/1.1574026
  • M. El-Shahed and A. Salem, On the generalized Navier–Stokes equations, Appl. Math. Comput. 156 (2004), pp. 287–293.
  • Z.F. El-Raheem and S.M. Salman, On a discretization process of fractional-order Logistic differential equation, J. Egypt. Math. Soc. 22 (2014), pp. 407–412. doi: 10.1016/j.joems.2013.09.001
  • A.M.A. El-Sayed, Z.F. El-Raheem, and S.M. Salman, Disretization of forced duffing system with fractional-order damping, Adv. Differ. Equ. 2014 (2014), pp. 66. doi:10.1186/1687-1847-2014-66
  • A.M.A. El-Sayed, A. Elsonbaty, A.A. Elsadany, and A.E. Matouk, Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization, Int. J. Bifurcat. Chaos 26(13) (2016), pp. 1650222. doi: 10.1142/S0218127416502229
  • V.S. Ertürk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), pp. 142–151. doi: 10.1016/j.cam.2007.03.029
  • V.S. Ertürk, Z.M. Odibat, and S. Momani, An approximate solution of a fractional order differential equation model of human T-cell Iymphotropic virus I (HTLV-I) infection of CD4+ T cells, Chaos Soliton Fract. 62 (2011), pp. 996–1002.
  • K. Gopalsamy and P. Liu, Persistence and global stability in a population model, J. Math. Anal. Appl. 224 (1998), pp. 59–80. doi: 10.1006/jmaa.1998.5984
  • M.S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos Soliton Fract. 107 (2018), pp. 161–169. doi: 10.1016/j.chaos.2018.01.002
  • M.S. Hashemi, Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative, Opt. Quant. Electron. 107 (2018), pp. 50–79.
  • A.S. Hegazia, E. Ahmeda, and A.E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), pp. 1193–1202. doi: 10.1016/j.cnsns.2012.09.026
  • H. Jafari and V. Daftardar-Gejji, Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations, Appl. Math. Comput. 181 (2006), pp. 598–608.
  • H. Jafari and V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Math. Anal. Appl. 196 (2006), pp. 644–651.
  • D. Jun, Z.G. Jun, X. Yong, Y. Hong, and W. Jue, Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model, Cong. Neurodyn. 8 (2014), pp. 167–175. doi: 10.1007/s11571-013-9273-x
  • R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), pp. 65–70. doi: 10.1016/j.cam.2014.01.002
  • N.A. Khan, M. Jamil, A. Ara, and N.U. Khan, On efficient method for system of fractional differential equations, Adv. Differ. Equ. 2011 (2011), p. 303472. Article ID 303472. doi: 10.1155/2011/303472
  • Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998.
  • J.A.T. Machado, M.F. Silva, R.S. Barbosa, I.S. Jesus, C.M. Reis, M.G. Marcos, and A.F. Galhano, Some applications of fractional calculus in engineering, Math. Probl. Eng. 2010 (2010), Article ID 639801.
  • A.E. Matouk, Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system, Phys. Lett. A 373 (2009), pp. 2166–2173. doi: 10.1016/j.physleta.2009.04.032
  • A.E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), pp. 975–986. doi: 10.1016/j.cnsns.2010.04.027
  • A.E. Matouk, Chaos synchronization of a fractional-order modified Van der Pol-Duffing system via new linear control, backstepping control and Takagi–Sugeno fuzzy approaches, Complexity 21(S1) (2016), pp. 116–124. doi: 10.1002/cplx.21719
  • A.E. Matouk and A.A. Elsadany, Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model, Nonlinear Dyn. 85 (2016), pp. 1597–1612. doi: 10.1007/s11071-016-2781-6
  • A.E. Matouk, A.A. Elsadany, E. Ahmed, and H.N. Agiza, Dynamical behavior of fractional-order Hastings–Powell food chain model and its discretization, Commun. Nonlinear Sci. Numer. Simulat. 27 (2015), pp. 153–167. doi: 10.1016/j.cnsns.2015.03.004
  • S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math. 207 (2007), pp. 96–110. doi: 10.1016/j.cam.2006.07.015
  • C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional-order Systems and Controls. Fundamentals and Applications, Springer, London, 2010.
  • Z. Odibat and S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model. 32 (2008), pp. 28–39. doi: 10.1016/j.apm.2006.10.025
  • N. Özal and E. Demirci, A fractional order SEIR model with vertical transmission, Math. Comput. Model. 54 (2011), pp. 1–6. doi: 10.1016/j.mcm.2010.12.051
  • G.G. Parra, A.J. Arenas, and B.M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Method Appl. Sci. 37 (2014), pp. 2218–2226. doi: 10.1002/mma.2968
  • L.M. Petrovic, D.T. Spasic, and T.M. Atanackovic, On a mathematical model of a human root dentin, Dent. Mater. 21 (2005), pp. 125–128. doi: 10.1016/j.dental.2004.01.004
  • C.M.A. Pinto and J.A.T. Machado, Fractional model for malaria transmission under control strategies, Comput. Math. Appl. 66 (2013), pp. 908–916. doi: 10.1016/j.camwa.2012.11.017
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • F.A. Rihan, Numerical modelling of fractional-order biological systems, Abstr. Appl. Anal. 2013 (2013), Article ID 816803. doi: 10.1155/2013/816803
  • R. Scherera, S.L. Kallab, Y. Tang, and J. Huang, The Grünwald–Letnikov method for fractional differential equations, Comput. Math. Appl. 62 (2011), pp. 902–917. doi: 10.1016/j.camwa.2011.03.054
  • H.H. Sherief and A.M. Abd El-Latief, Application of fractional order theory of thermo elasticity to a 2D problem for a half-space, Appl. Math. Comput. 248 (2014), pp. 584–592.
  • V.E. Tarasov, Fractional statistical mechanics, Chaos 16 (2006), Article ID 033108.
  • C. Ünlü, H. Jafari, and D. Baleanu, Revised variational iteration method for solving systems of nonlinear fractional order differential equations, Abstr. Appl. Anal. 2013 (2013), Article ID 461837. doi: 10.1155/2013/461837
  • S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Springer-Verlag, New York, 2003.
  • G.C. Wu, A fractional variational iteration method for solving fractional nonlinear differential equations, J. Comput. Appl. Math. 61 (2011), pp. 2186–2190. doi: 10.1016/j.camwa.2010.09.010
  • Y. Wu, C. Wang, and S.J. Liao, Solving the one-loop soliton solution of the Vakhnenko equation by means of the Homotopy analysis method, Chaos Soliton Fract. 23 (2005), pp. 1733–1740. doi: 10.1016/S0960-0779(04)00437-0
  • Y. Yan and C. Kou, Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay, Math. Comput. Simulat. 82 (2012), pp. 1572–1585. doi: 10.1016/j.matcom.2012.01.004
  • H. Ye and Y. Ding, Nonlinear dynamics and chaos in a fractional-order HIV model, Math. Probl. Eng. 2009 (2009), Article ID 378614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.