2,651
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

BENCHOP – SLV: the BENCHmarking project in Option Pricing – Stochastic and Local Volatility problems

, , , , , , , , , , & show all
Pages 1910-1923 | Received 18 Jul 2018, Accepted 13 Oct 2018, Published online: 15 Nov 2018

References

  • M. Abramowitz and I.A. Stegun, Bessel functions J and Y, § 9.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, NY, 10th printing, 1972.
  • L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model, J. Comput. Finance 11 (2008), pp. 1–42. doi: 10.21314/JCF.2008.189
  • V. Bayona, N. Flyer, B. Fornberg, and G.A. Barnett, On the role of polynomials in RBF-FD approximations: II. numerical solution of elliptic PDEs, J. Comput. Phys. 332 (2017), pp. 257–273. doi: 10.1016/j.jcp.2016.12.008
  • M. Broadie and Ö. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion processes, Oper. Res. 54(2) (2006), pp. 217–231. doi: 10.1287/opre.1050.0247
  • M. Brodén, J. Holst, E. Lindström, J. Ströjby, and M. Wiktorsson, Sequential calibration of options, Technical Report, Centre for Mathematical Sciences, Mathematical Statistics, Lund University, 2006. Contains additional material not included in the CSDA paper.
  • P. Carr, H. Geman, D. Madan, L. Wu, and M. Yor, Option pricing using integral transforms, 2003. A slideshow presentation available at: http://www.math.nyu.edu/research/carrp/papers/pdf/integtransform.pdf.
  • B. Chen, C.W. Oosterlee, and H. van der Weide, A low-bias simulation scheme for the SABR stochastic volatility model, Int. J. Theor. Appl. Finance 15(2) (2012), pp. 1250016-1–1250016-37. doi: 10.1142/S0219024912500161
  • E. Ekström and J. Tysk, Boundary conditions for the single-factor term structure equation, Ann. Appl. Probab. 21(1) (2011), pp. 332–350. doi: 10.1214/10-AAP698
  • W. Feller, Two singular diffusion problems, Ann. Math. 54 (1951), pp. 173–182. doi: 10.2307/1969318
  • Q. Feng and C. Oosterlee, Monte Carlo calculation of exposure profiles and Greeks for Bermudan and barrier options under the Heston Hull–White model, in Recent Progress and Modern Challenges in Applied Mathematics, R. Melnik, R. Makarov, and J. Belair, eds., Springer Fields Institute Communications, 2017, pp. 265–301.
  • N. Flyer, B. Fornberg, V. Bayona, and G.A. Barnett, On the role of polynomials in RBF–FD approximations: I. Interpolation and accuracy, J. Comput. Phys. 321 (2016), pp. 21–38. doi: 10.1016/j.jcp.2016.05.026
  • M.B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), pp. 607–617. doi: 10.1287/opre.1070.0496
  • G.H. Givens and J.A. Hoeting, Computational Statistics, Vol. 710. John Wiley & Sons, Hoboken, NJ, 2012.
  • G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23(106) (1969), pp. 221–230. doi: 10.1090/S0025-5718-69-99647-1
  • L.A. Grzelak and C.W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financial Math. 2 (2011), pp. 255–286. doi: 10.1137/090756119
  • L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee, The stochastic collocation Monte Carlo sampler: Highly efficient sampling from “expensive” distributions, Quant. Finance (2018). doi:10.1080/14697688.2018.1459807.
  • T. Haentjens and K.J. In 't Hout, Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation, J. Comput. Finance 16 (2012), pp. 83–110. doi: 10.21314/JCF.2012.244
  • P.S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward, Managing smile risk, Wilmott Mag. 1 (2002), pp. 84–108.
  • S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud. 11 (1993), pp. 327–343. doi: 10.1093/rfs/6.2.327
  • K.J. In 't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model. 7(2) (2010), pp. 303–320.
  • K.J. In 't Hout and B.D. Welfert, Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms, Appl. Numer. Math. 59(3–4) (2009), pp. 677–692. doi: 10.1016/j.apnum.2008.03.016
  • S. Jain and C.W. Oosterlee, The stochastic grid bundling method: Efficient pricing of Bermudan options and their Greeks, Appl. Math. Comput. 269 (2015), pp. 412–431.
  • R.W. Lee, Option pricing by transform methods: Extensions, unification and error control, J. Comput. Finance 7(3) (2004), pp. 51–86. doi: 10.21314/JCF.2004.121
  • A. Leitao, L.A. Grzelak, and C.W. Oosterlee, On an efficient multiple time step Monte Carlo simulation of the SABR model, Quant. Finance 17(10) (2017), pp. 1549–1565. URL https://doi.org/10.1080/14697688.2017.1301676.
  • E. Lindström, J. Ströjby, M. Brodén, M. Wiktorsson, and J. Holst, Sequential calibration of options, Comput. Stat. Data Anal. 52(6) (2008), pp. 2877–2891. doi: 10.1016/j.csda.2007.08.009
  • A. Lipton, A. Gal, and A. Lasis, Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: Survey and new results, Quant. Finance 14 (2014), pp. 1899–1922. doi: 10.1080/14697688.2014.930965
  • V. Lucic, Boundary conditions for computing densities in hybrid models via PDE methods, Stoch. Int. J. Probab. Stoch. Process. 84(5–6) (2012), pp. 705–718. doi: 10.1080/17442508.2012.656270
  • S. Milovanović and V. Shcherbakov, Pricing derivatives under multiple stochastic factors by localized radial basis function methods. arXiv:1711.09852 [q-fin.CP], 2017.
  • S. Milovanović and L. von Sydow, Radial basis function generated finite differences for option pricing problems, Comput. Math. Appl. 75(4) (2018), pp. 1462–1481. doi: 10.1016/j.camwa.2017.11.015
  • K.-S. Moon, Efficient Monte Carlo algorithm for pricing barrier options, Commun. Korean Math. Soc. 23(2) (2008), pp. 285–294. doi: 10.4134/CKMS.2008.23.2.285
  • A. Safdari-Vaighani, A. Heryudono, and E. Larsson, A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications, J. Sci. Comput. 64 (2014), pp. 1–27.
  • V. Shcherbakov, Radial basis function partition of unity operator splitting method for pricing multi-asset American options, BIT Numer. Math. 56 (2016), pp. 1401–1423. doi: 10.1007/s10543-016-0616-y
  • V. Shcherbakov and E. Larsson, Radial basis function partition of unity methods for pricing vanilla basket options, Comput. Math. Appl. 71 (2016), pp. 185–200. doi: 10.1016/j.camwa.2015.11.007
  • L. von Sydow, L.J. Höök, E. Larsson, E. Lindström, S. Milovanović, J. Persson, V. Shcherbakov, Y. Shpolyanskiy, S. Sirén, J. Toivanen, and J. Waldén, BENCHOP – the BENCHmarking project in Option Pricing, Int. J. Comput. Math. 92(12) (2015), pp. 2361–2379. doi: 10.1080/00207160.2015.1072172
  • M. Wiktorsson, Pricing using Fourier based methods applied to the SABR model in the case of zero correlation, 2018. Working paper available at: http://www.maths.lth.se/matstat/staff/magnusw/papers/SABR_notes.pdf.
  • M. Wyns and K.J. In 't Hout, An adjoint method for the exact calibration of stochastic local volatility models, J. Comput. Sci. 24 (2018), pp. 182–194. doi: 10.1016/j.jocs.2017.02.004