405
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Determination of the time-dependent reaction coefficient and the heat flux in a nonlinear inverse heat conduction problem

, , , &
Pages 2079-2099 | Received 09 Jul 2018, Accepted 02 Dec 2018, Published online: 18 Dec 2018

References

  • O.M. Alifanov, Solution of an inverse problem of heat conduction by iteration methods, J. Eng. Phys. 26 (1974), pp. 471–476. doi: 10.1007/BF00827525
  • O.M. Alifanov, Inverse Heat Transfer Problems, Science & Business Media, Berlin, 2012.
  • J.V. Beck, B. Blackwell, and C.R. St. Clair, Inverse Heat Conduction, Wiley, New York, 1985.
  • Y.Y. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002.
  • H.R. Busby and D.M. Trujillo, Numerical solution to a two-dimensional inverse heat conduction problem, Int. J. Numer. Methods Eng. 21 (1985), pp. 349–359. doi: 10.1002/nme.1620210211
  • J.R. Cannon, Structural identification of an unknown source term in a heat equation, Inverse. Probl. 14 (1998), pp. 535–551. doi: 10.1088/0266-5611/14/3/010
  • K. Cao and D. Lesnic, Reconstruction of the perfusion coefficient from temperature measurements using the conjugate gradient method, Int. J. Comput. Math. 95 (2018), pp. 797–814. doi: 10.1080/00207160.2017.1296955
  • G. Chi and G. Li, Numerical inversions for a nonlinear source term in the heat equation by optimal perturbation algorithm, Appl. Math. Comput. 216 (2010), pp. 2408–2416.
  • R. Das, S.C. Mishra, T.B.P. Kumar, and R. Uppaluri, An inverse analysis for parameter estimation applied to a non-Fourier conduction–radiation problem, Heat Transf. Eng. 32 (2011), pp. 455–466. doi: 10.1080/01457632.2010.506167
  • R. Das and K.T. Ooi, Application of simulated annealing in a rectangular fin with variable heat transfer coefficient, Inverse Probl. Sci. Eng. 21 (2013), pp. 1352–1367. doi: 10.1080/17415977.2013.764294
  • R. Das, K. Singh, B. Akay, and T.K. Gogoi, Application of artificial bee colony algorithm for maximizing heat transfer in a perforated fin, Proc. Inst. Mech. Eng. E 232 (2016), pp. 38–48. doi: 10.1177/0954408916682985
  • M. Dehghan, Finding a control parameter in one-dimensional parabolic equations, Appl. Math. Comput. 135 (2003), pp. 491–503.
  • Z.C. Deng, L. Yang, J.N. Yu, and G.W. Luo, An inverse problem of identifying the coefficient in a nonlinear parabolic equation, Nonlinear Anal. 71 (2009), pp. 6212–6221. doi: 10.1016/j.na.2009.06.014
  • A. Erdem, D. Lesnic, and A. Hasanov, Identification of a spacewise dependent heat source, Appl. Math. Model. 37 (2013), pp. 10231–10244. doi: 10.1016/j.apm.2013.06.006
  • Z.C. Feng, J.K. Chen, Y. Zhang, and J.L. Griggs, Estimation of front surface temperature and heat flux of a locally heated plate from distributed sensor data on the back surface, Int. J. Heat Mass Transf. 54 (2011), pp. 3431–3439. doi: 10.1016/j.ijheatmasstransfer.2011.03.043
  • A.P. Fernandes, M.B. dos Santos, and G. Guimarães, An analytical transfer function method to solve inverse heat conduction problems, Appl. Math. Model. 39 (2015), pp. 6897–6914. doi: 10.1016/j.apm.2015.02.012
  • T.K. Gogoi and R. Das, Inverse analysis of an internal reforming solid oxide fuel cell system using simplex search method, Appl. Math. Model. 37 (2013), pp. 6994–7015. doi: 10.1016/j.apm.2013.02.046
  • P.C. Hansen, The truncated SVD as a method for regularization, BIT Numer. Math. 27 (1987), pp. 534–553. doi: 10.1007/BF01937276
  • D.N. Hào, Methods for Inverse Heat Conduction Problems, Peter Lang, Frankfurt am Main, 1998.
  • A. Hasanov, Identification of spacewise and time dependent source terms in 1D heat conduction equation from temperature measurement at a final time, Int. J. Heat Mass Transf. 55 (2012), pp. 2069–2080. doi: 10.1016/j.ijheatmasstransfer.2011.12.009
  • A. Hazanee, M.I. Ismailov, D. Lesnic, and N.B. Kerimov, An inverse time-dependent source problem for the heat equation, Appl. Numer. Math. 69 (2013), pp. 13–33. doi: 10.1016/j.apnum.2013.02.004
  • C.H. Huang, P.Y. Wu, and S. Kim, A nonlinear inverse problem in estimating the polymerization heat source of bone cements by an iterative regularization method, Inverse. Probl. 26 (2010), pp. 065009. doi: 10.1088/0266-5611/26/6/065009
  • K.I. Khudaverdiyev and A.G. Alieva, On the global existence of solution to one-dimensional fourth order nonlinear Sobolev type equations, Appl. Math. Comput. 217 (2010), pp. 347–354.
  • S.Y. Lee and T.W. Huang, A method for inverse analysis of laser surface heating with experimental data, Int. J. Heat Mass Transf. 72 (2014), pp. 299–307. doi: 10.1016/j.ijheatmasstransfer.2013.12.067
  • D. Lesnic, Identification of the time-dependent perfusion coefficient in the bio-heat conduction equation, J. Inverse Ill-Posed Probl. 17 (2009), pp. 753–764. doi: 10.1515/JIIP.2009.044
  • D. Lesnic and M. Ivanchov, Determination of the time-dependent perfusion coefficient in the bio-heat equation, Appl. Math. Lett. 39 (2015), pp. 96–100. doi: 10.1016/j.aml.2014.08.020
  • C.N. Lin and J.Y. Jang, A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins, Int. J. Heat Mass Transf. 45 (2002), pp. 3839–3847. doi: 10.1016/S0017-9310(02)00086-8
  • L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic, and X. Wen, Analysis of polygonal fins using the boundary element method, Appl. Thermal Eng. 24 (2004), pp. 1321–1339. doi: 10.1016/j.applthermaleng.2003.12.022
  • M. Mohammadi, M.R. Hematiyan, and L. Marin, Boundary element analysis of nonlinear transient heat conduction problems involving non-homogenous and nonlinear heat sources using time-dependent fundamental solutions, Eng. Anal. Bound. Elem. 34 (2010), pp. 655–665. doi: 10.1016/j.enganabound.2010.02.004
  • M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York, 2000.
  • P.W. Partridge and L.C. Wrobel, The dual reciprocity boundary element method for spontaneous ignition, Int. J. Numer. Methods Eng. 30 (1990), pp. 953–963. doi: 10.1002/nme.1620300502
  • S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
  • R.L. Potts, Application of integral methods to ablation charring erosion - a review, J. Spacecr. Rockets 32 (1995), pp. 200–209. doi: 10.2514/3.26597
  • R. Riganti and E. Savateev, Solution of an inverse problem for the nonlinear heat equation, Comm. Partial Diff. Eq. 19 (1994), pp. 1611–1628. doi: 10.1080/03605309408821066
  • E.G. Savateev and R. Riganti, Inverse problem for the nonlinear heat equation with the final overdetermination, Math. Comput. Model. 22 (1995), pp. 29–43. doi: 10.1016/0895-7177(95)00098-M
  • E.P. Scott, P.S. Robinson, and T.E. Diller, Development of methodologies for the estimation of blood perfusion using a minimally invasive thermal probe, Meas. Sci. Technol. 9 (1998), pp. 888–897. doi: 10.1088/0957-0233/9/6/005
  • A. Shidfar, B. Jazbi, and M. Alinejadmofrad, Numerical approximation of a non-linear source term for an inverse parabolic problem, Comput. Appl. Math. 34 (2015), pp. 363–373. doi: 10.1007/s40314-014-0121-3
  • A. Shidfar, G.R. Karamali, and J. Damirchi, An inverse heat conduction problem with a nonlinear source term, Nonlinear Anal. 65 (2006), pp. 615–621. doi: 10.1016/j.na.2005.09.030
  • E.A. Sudicky, The Laplace transform Galerkin technique: A time-continuous finite element theory and application to mass transport in groundwater, Water Resour. Res. 25 (1989), pp. 1833–1846. doi: 10.1029/WR025i008p01833
  • A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington DC, 1977.
  • D. Trucu, D.B. Ingham, and D. Lesnic, Inverse time-dependent perfusion coefficient identification, J. Phys. Conf. Ser. 124 (2008), pp. 012050. doi: 10.1088/1742-6596/124/1/012050
  • D. Trucu, D.B. Ingham, and D. Lesnic, Space-dependent perfusion coefficient identification in the transient bio-heat equation, J. Eng. Math. 67 (2010), pp. 307–315. doi: 10.1007/s10665-009-9319-6
  • N.H. Tuan, V.V. Au, D. Lesnic, and T.Q. Viet, Regularization of nonlinear sideways heat equation, accepted by IMA J. Appl. Math.
  • S. Wang and Y. Lin, A finite difference solution to an inverse problem for determining a control function in a parabolic partial differential equation, Inverse. Probl. 5 (1989), pp. 631–640. doi: 10.1088/0266-5611/5/4/013
  • S. Zhu and P. Satravaha, An efficient computational method for modelling transient heat conduction with nonlinear source terms, Appl. Math. Model. 20 (1996), pp. 513–522. doi: 10.1016/0307-904X(95)00170-O
  • Y. Zhu, F. Yi, S. Meng, L. Zhuo, W. Pan, and J. Zhang, Multiphysical behavior of a lightweight ablator: Experiments, modeling, and analysis, J. Spacecr. Rockets 544 (2017), pp. 1–10.
  • S. Zhu, Y. Zhang, and T.R. Marchant, A DRBEM model for microwave heating problems, Appl. Math. Model. 19 (1995), pp. 287–297. doi: 10.1016/0307-904X(94)00036-6
  • L. Zhuo, F. Yi, and S. Meng, An inverse method for the estimation of a long-duration surface heat flux on a finite solid, Int. J. Heat Mass Transf. 106 (2017), pp. 1087–1096. doi: 10.1016/j.ijheatmasstransfer.2016.10.085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.