228
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Kronecker product-based structure preserving preconditioner for three-dimensional space-fractional diffusion equations

&
Pages 585-601 | Received 11 Aug 2018, Accepted 06 Feb 2019, Published online: 07 Mar 2019

References

  • Z.-Z. Bai, A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations, Adv. Comput. Math. 10 (1999), pp. 169–186. doi: 10.1023/A:1018974514896
  • Z.-Z. Bai, Modified block SSOR preconditioners for symmetric positive definite linear systems, Ann. Oper. Res. 103 (2001), pp. 263–282. doi: 10.1023/A:1012915424955
  • Z.-Z. Bai, On the convergence of additive and multiplicative splitting iterations for systems of linear equations, J. Comput. Appl. Math. 154 (2003), pp. 195–214. doi: 10.1016/S0377-0427(02)00822-1
  • Z.-Z. Bai, G.H. Golub and M.K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear. Algebra. Appl. 14 (2007), pp. 319–335. doi: 10.1002/nla.517
  • Z.-Z. Bai, Motivations and realizations of Krylov subspace methods for large sparse linear systems, J. Comput. Appl. Math. 283 (2015), pp. 71–78. doi: 10.1016/j.cam.2015.01.025
  • Z.-Z. Bai, On SSOR-like preconditioners for non-Hermitian positive definite matrices, Numer. Linear. Algebra. Appl. 23 (2016), pp. 37–60. doi: 10.1002/nla.2004
  • Z.-Z. Bai, K.-Y. Lu and J.-Y. Pan, Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, Numer. Linear. Algebra. Appl. 24 (2017), pp. e2093. 1–15. doi:10.1002/nla.2093.
  • T. Breiten, V. Simoncini and M. Stoll, Low-rank solvers for fractional differential equations, Electronic Trans. Numer. Anal. 45 (2016), pp. 107–132.
  • K. Burrage, N. Hale and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput. 34 (2012), pp. A2145–A2172. doi: 10.1137/110847007
  • H. Chen, A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods, BIT. 54 (2014), pp. 607–621. doi: 10.1007/s10543-014-0467-3
  • H. Chen, Generalized Kronecker product splitting iteration for the solution of implicit Runge-Kutta and boundary value methods, Numer. Linear. Algebra. Appl. 22 (2015), pp. 357–370. doi: 10.1002/nla.1960
  • H. Chen, Kronecker product splitting preconditioners for implicit Runge-Kutta discretizations of viscous wave equations, Appl. Math. Model. 40 (2016), pp. 4429–4440. doi: 10.1016/j.apm.2015.11.037
  • H. Chen, A splitting preconditioner for implicit Runge-Kutta discretizations of a partial differential-algebraic equation, Numer. Algorithms 73 (2016), pp. 1037–1054. doi: 10.1007/s11075-016-0128-5
  • H. Chen, W. Lv and T.-T. Zhang, A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations, J. Comput. Phys. 360 (2018), pp. 1–14. doi: 10.1016/j.jcp.2018.01.034
  • H. Chen, T.-T. Zhang and W. Lv, Block preconditioning strategies for time-space fractional diffusion equations, Appl. Math. Comput. 337 (2018), pp. 41–53.
  • M.-H. Chen, W.-H. Deng and Y.-J. Wu, Superlinear convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equations, Appl. Numer. Math. 70 (2013), pp. 22–41. doi: 10.1016/j.apnum.2013.03.006
  • M.-H. Chen and W.-H. Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J. Numer. Anal. 52 (2014), pp. 1418–1438. doi: 10.1137/130933447
  • L.-K. Chou and S.-L. Lei, Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy, Comput. Math. Appl. 73 (2017), pp. 385–403. doi: 10.1016/j.camwa.2016.11.034
  • M. Donatelli, M. Mazza and S. Serra-Capizzano, Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys. 307 (2016), pp. 262–279. doi: 10.1016/j.jcp.2015.11.061
  • B.-L. Guo, X.-K. Pu and F.-H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, World Scientific, Singapore, 2015.
  • X.-Q. Jin, F.-R. Lin and Z. Zhao, Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Commun. Comput. Phys. 18 (2015), pp. 469–488. doi: 10.4208/cicp.120314.230115a
  • T.A.M. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736. doi: 10.1016/j.jcp.2004.11.025
  • S.-L. Lei and H.-W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys. 242 (2013), pp. 715–725. doi: 10.1016/j.jcp.2013.02.025
  • S.-L. Lei, X. Chen and X.-H. Zhang, Multilevel circulant preconditioner for high-dimensional fractional diffusion equations, EAJAM. 6 (2016), pp. 109–130. doi: 10.4208/eajam.060815.180116a
  • S.-L. Lei and Y.-C. Huang, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math. 94 (2017), pp. 1062–1078. doi: 10.1080/00207160.2016.1149579
  • D.-F. Li, C.-J. Zhang and M.-H. Ran, A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Model. 40 (2016), pp. 6069–6081. doi: 10.1016/j.apm.2016.01.043
  • D.-F. Li and J.-W. Zhang, Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. Phys. 322 (2016), pp. 415–428. doi: 10.1016/j.jcp.2016.06.046
  • D.-F. Li, H.-L. Liao, W.-W. Sun, J.-L. Wang and J.-W. Zhang, Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems, Commun. Comput. Phys. 24 (2018), pp. 86–103.
  • D.-F. Li, J.-L. Wang and J.-W. Zhang, Unconditionally covergent L1-Galerkin FEMs for nonlinear time-fractional Schr”odinger equations, SIAM J. Sci. Comput. 39 (2017), pp. A3067–A3088. doi: 10.1137/16M1105700
  • R.-R. Lin, S.-W. Yang and X.-Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys. 256 (2014), pp. 109–117. doi: 10.1016/j.jcp.2013.07.040
  • X.-L. Lin, M.K. Ng and H.-W. Sun, A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl. 38 (2017), pp. 1580–1614. doi: 10.1137/17M1115447
  • X.-L. Lin, M.K. Ng and H.-W. Sun, Efficient preconditioner of one-sided space fractional diffusion equation, BIT 58 (2018), pp. 729–748. doi: 10.1007/s10543-018-0699-8
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equation, J. Comput. Appl. Math. 172 (2004), pp. 65–77. doi: 10.1016/j.cam.2004.01.033
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56(1) (2006), pp. 80–90. doi: 10.1016/j.apnum.2005.02.008
  • H. Moghaderi, M. Dehghan, M. Donatelli and M. Mazza, Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations, J. Comput. Phys. 350 (2017), pp. 992–1011. doi: 10.1016/j.jcp.2017.08.064
  • M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004.
  • J.-Y. Pan, R.-H. Ke, M.K. Ng and H.-W Sun, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput. 36 (2014), pp. A2698–A2719. doi: 10.1137/130931795
  • H. Pang and H.-W. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys. 231 (2012), pp. 693–703. doi: 10.1016/j.jcp.2011.10.005
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999. Math. Sci. Engrg. 198.
  • I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen and B. Vinagre Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys. 228 (2009), pp. 3137–3153. doi: 10.1016/j.jcp.2009.01.014
  • S. Serra-Capizzano, Optimal, quasi-optimal and superlinear preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems, Math. Comput. 66 (1997), pp. 651–666. doi: 10.1090/S0025-5718-97-00833-8
  • S. Serra-Capizzano and E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl. 21 (1999), pp. 431–439. doi: 10.1137/S0895479897331941
  • A. Simmons, Q.-Q. Yang and T. Moroney, A preconditioned numerical solver for stiff nonlinear reaction-diffusion equations with fractional Laplacians that avoids dense matrices, J. Comput. Phys. 287 (2015), pp. 254–268. doi: 10.1016/j.jcp.2015.02.012
  • C. Tadjeran, M.M. Meerschaert and H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), pp. 205–213. doi: 10.1016/j.jcp.2005.08.008
  • W. Tian, H. Zhou and W. Deng, A class of second order difference approximation for solving space-fractional diffusion equations, Math. Comp. 84 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • H. Wang, K. Wang and T. Sircar, A direct O(Nlog2⁡N) finite difference method for fractional diffusion equations, J. Comput. Phys. 229 (2010), pp. 8095–8104. doi: 10.1016/j.jcp.2010.07.011
  • H. Wang and N. Du, A fast finite difference method for three-dimensional time-dependent space-fractional diffuion equations and its efficient implementation, J. Comput. Phys. 253 (2013), pp. 50–63. doi: 10.1016/j.jcp.2013.06.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.