309
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Vibrations suppression of fractionally damped plates using multiple optimal dynamic vibration absorbers

, &
Pages 851-874 | Received 14 Oct 2018, Accepted 10 Mar 2019, Published online: 06 May 2019

References

  • I.M. Abu-Alshaikh, A.N. Al-Rabadi, H.S. Alkhaldi, Dynamic response of beam with multi-attached oscillators and moving mass: fractional calculus approach. Jordan J. Mech. Ind. Eng 8 (2014), pp. 275–288.
  • Y. Aköz, F. Kadioğlu, The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods Eng 44 (1999), pp. 1909–1932. doi: 10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P
  • H.S. Alkhaldi, I.M. Abu-Alshaikh, A.N. Al-Rabadi, Vibration control of fractionally-damped beam subjected to a moving vehicle and attached to fractionally-damped multiabsorbers. Adv. Math. Phys 2013 (2013), Article ID 232160, pp. 1–12. doi: 10.1155/2013/232160
  • G. Alotta, O. Barrera, A. Cocks, et al., The finite element implementation of 3D fractional viscoelastic constitutive models. Finite Elem. Anal. Des 146 (2018), pp. 28–41. doi: 10.1016/j.finel.2018.04.003
  • H. Altenbach, V.A. Eremeyev, On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204 (2009), pp. 137–154. doi: 10.1007/s00707-008-0053-3
  • M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge, 2008.
  • M. Amabili, Nonlinear vibrations of viscoelastic rectangular plates. J. Sound Vib 362 (2016), pp. 142–156. doi: 10.1016/j.jsv.2015.09.035
  • N.G. Babouskos, J.T. Katsikadelis, Nonlinear vibrations of viscoelastic plates of fractional derivative type: an AEM solution. Open Mech. J. 4 (2010), pp. 8–20. doi: 10.2174/1874158401004010008
  • R.L. Bagley, P.J. Torvik, Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), pp. 741–748. doi: 10.2514/3.8142
  • R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. (N. Y. N. Y 27 (1983), pp. 201–210. doi: 10.1122/1.549724
  • R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23 (1985), pp. 918–925. doi: 10.2514/3.9007
  • R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol. (N. Y. N. Y 30 (1986), pp. 133–155. doi: 10.1122/1.549887
  • R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol. (N. Y. N. Y 30 (1986), pp. 133–155. doi: 10.1122/1.549887
  • W. Bu, X. Liu, Y. Tang, et al., Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. model. Simulation. Sci. Comput 6 (2015), pp. 1540001.
  • A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib 284 (2005), pp. 1239–1245. doi: 10.1016/j.jsv.2004.09.019
  • N. Colinas-Armijo, M. Di Paola, and F.P. Pinnola, Fractional characteristic times and dissipated energy in fractional linear viscoelasticity. Commun. Nonlinear Sci. Numer. Simul 37 (2016), pp. 14–30. doi: 10.1016/j.cnsns.2016.01.003
  • E. Esmailzadeh, M.A. Jalali, Nonlinear oscillations of viscoelastic rectangular plates. Nonlinear Dyn. 18 (1999), pp. 311–319. doi: 10.1023/A:1026452007472
  • E. Farno, J.-C. Baudez, N. Eshtiaghi, Comparison between classical Kelvin-Voigt and fractional derivative Kelvin-Voigt models in prediction of linear viscoelastic behaviour of waste activated sludge. Sci. Total Environ 613 (2018), pp. 1031–1036. doi: 10.1016/j.scitotenv.2017.09.206
  • E. Goldfain, Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul 13 (2008), pp. 1397–1404. doi: 10.1016/j.cnsns.2006.12.007
  • A.K. Gupta, L. Kumar, Vibration of non-homogeneous visco-elastic circular plate of linearly varying thickness in steady state temperature field. J. Theor. Appl. Mech 48 (2010), pp. 255–266.
  • S. Hatami, H.R. Ronagh, M. Azhari, Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct 86 (2008), pp. 1738–1746. doi: 10.1016/j.compstruc.2008.02.002
  • A. Hernández-Jiménez, J. Hernández-Santiago, A. Macias-Garcıa, et al., Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym. Test 21 (2002), pp. 325–331. doi: 10.1016/S0142-9418(01)00092-7
  • N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45 (2006), pp. 765–771. doi: 10.1007/s00397-005-0043-5
  • D.I.G. Jones, Handbook of Viscoelastic Vibration Damping, Wiley, 2001.
  • E. Kharazmi, M. Zayernouri, Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math 95 (2018), pp. 1340–1361. doi: 10.1080/00207160.2017.1421949
  • E. Kharazmi, M. Zayernouri, G.E. Karniadakis, A Petrov–galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng 324 (2017), pp. 512–536. doi: 10.1016/j.cma.2017.06.006
  • C.G. Koh, J.M. Kelly, Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn 19 (1990), pp. 229–241. doi: 10.1002/eqe.4290190207
  • K.L. Kuhlman, Review of inverse Laplace transform algorithms for Laplace-space numerical approaches. Numer. Algorithms 63 (2013), pp. 339–355. doi: 10.1007/s11075-012-9625-3
  • D. Lei, Y. Liang, R. Xiao, A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics. Phys. A Stat. Mech. its Appl 490 (2018), pp. 465–475. doi: 10.1016/j.physa.2017.08.037
  • C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo derivatives. Discret. Dyn. Nat. Soc 2011 (2011), Article ID 562494, pp. 1--15.
  • M. Li, X.-M. Gu, C. Huang, et al., A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys 358 (2018), pp. 256–282. doi: 10.1016/j.jcp.2017.12.044
  • M. Li, C. Huang, P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74 (2017), pp. 499–525. doi: 10.1007/s11075-016-0160-5
  • S. Liang, R. Wu, L. Chen, Laplace transform of fractional order differential equations, Electron. J. Differ. Equ 2015 (2015), pp. 1–15.
  • Y. Lijun, J. Xueliang, The natural transverse vibration of rectangular thick plates with viscoelastic on viscoelastic foundation. Electron. J. Geotech. Eng 19 N (2014), pp. 3173–3179.
  • R.M. Lin, T.Y. Ng, Development of a theoretical framework for vibration analysis of the class of problems described by fractional derivatives. Mech. Syst. Signal Process 116 (2019), pp. 78–96. doi: 10.1016/j.ymssp.2018.06.020
  • P. Litewka, R. Lewandowski, Steady-state non-linear vibrations of plates using Zener material model with fractional derivative. Comput. Mech 60 (2017), pp. 333–354. doi: 10.1007/s00466-017-1408-1
  • F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top 193 (2011), pp. 133–160. doi: 10.1140/epjst/e2011-01387-1
  • S. Majumdar, S. Hazra, M.D. Choudhury, et al., A study of the rheological properties of visco-elastic materials using fractional calculus. Colloid. Surf. A. Physicochem. Eng. Asp 516 (2017), pp. 181–189. doi: 10.1016/j.colsurfa.2016.12.019
  • N. Makris, M.C. Constantinou, Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng 117 (1991), pp. 2708–2724. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2708)
  • F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul 15 (2010), pp. 939–945. doi: 10.1016/j.cnsns.2009.05.004
  • M.R. Permoon, H. Haddadpour, M. Javadi, Nonlinear vibration of fractional viscoelastic plate: Primary, subharmonic, and superharmonic response. Int. J. Non. Linear. Mech 99 (2018), pp. 154–164. doi: 10.1016/j.ijnonlinmec.2017.11.010
  • A.G. Piersol, C.M. Harris, Harri’s Shock and Vibration Handbook, Fifth Edition, McGraw-Hill, 2017.
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198, Elsevier, 1998.
  • T. Pritz, Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib 265(5) (2003), pp. 935–952. doi: 10.1016/S0022-460X(02)01530-4
  • H. Qi, M. Xu, Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech. Res. Commun 34 (2007), pp. 210–212. doi: 10.1016/j.mechrescom.2006.09.003
  • Y.A. Rossikhin, M.V. Shitikova, Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal. Processing. 86 (2006), pp. 2703–2711. doi: 10.1016/j.sigpro.2006.02.016
  • I. Saidi, E.F. Gad, J.L. Wilson, et al., Development of passive viscoelastic damper to attenuate excessive floor vibrations. Eng. Struct 33 (2011), pp. 3317–3328. doi: 10.1016/j.engstruct.2011.05.017
  • M. Samiee, E. Kharazmi, M. Zayernouri, Fast Spectral Methods for Temporally-Distributed Fractional PDEs, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, Springer, 2017. pp. 651–667.
  • M. Samiee, M. Zayernouri, M.M. Meerschaert, A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J. Comput. Phys 385 (2019), pp. 225–243. doi: 10.1016/j.jcp.2018.02.014
  • M. Samiee, M. Zayernouri, M.M. Meerschaert, A unified spectral method for FPDEs with two-sided derivatives; part II: stability, and error analysis. J. Comput. Phys 385 (2019), pp. 244–261. doi: 10.1016/j.jcp.2018.07.041
  • M. Sasso, G. Palmieri, D. Amodio, Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend.Mater 15 (2011), pp. 367–387. doi: 10.1007/s11043-011-9153-x
  • C. Sheng, J. Shen, A hybrid spectral element method for fractional two-point boundary value problems, Numer. Math. theory. Methods Appl 10 (2017), pp. 437–464.
  • N. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf 42(4) (1999), pp. 825–837. doi: 10.1299/jsmec.42.825
  • S. Srinivas, A.K. Rao, An exact analysis of free vibrations of simply-supported viscoelastic plates. J. Sound Vib 19(3) (1971), pp. 251–259. doi: 10.1016/0022-460X(71)90687-0
  • H.G. Sun, Y. Zhang, D. Baleanu, et al., A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul 64 (2018), pp. 213–231. doi: 10.1016/j.cnsns.2018.04.019
  • J.L. Suzuki, M. Zayernouri, M.L. Bittencourt, et al., Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput. Methods Appl. Mech. Eng 308 (2016), pp. 443–467. doi: 10.1016/j.cma.2016.05.030
  • Y.-Q. Tang, L.-Q. Chen, Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3: 1 internal resonance. Nonlinear Dyn. 69 (2012), pp. 159–172. doi: 10.1007/s11071-011-0253-6
  • J.A. Tenreiro MacHado, M.F. Silva, R.S. Barbosa, et al., Some applications of fractional calculus in engineering. Math. Probl. Eng 2010 (2010), Article ID 639801, pp. 1--34. doi: 10.1155/2010/639801
  • P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech 51 (1984), pp. 294–298. doi: 10.1115/1.3167615
  • P.J. Torvik, R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech 51 (1984), pp. 294–298. doi: 10.1115/1.3167615
  • S.A. Trogdon, Small amplitude vibration of viscoelastic plates. Acta Mech. 53 (1984), pp. 233–243. doi: 10.1007/BF01177953
  • A.C. Ugural, Stresses in Beams, Plates, and Shells, 3rd ed., CRC Press, Boca Raton, 2009.
  • Y. Wang, Z. Wang, Transverse vibration of viscoelastic rectangular plate with linearly varying thickness and multiple cracks. J. Sound Vib 318(4--5) (2008), pp. 1005–1023. doi: 10.1016/j.jsv.2008.05.013
  • Z.O. Xia, S. Łukasiewicz, Nonlinear damped vibrations of simply-supported rectangular sandwich plates. Nonlinear Dyn. 8 (1995), pp. 417–433.
  • M. Zayernouri, M. Ainsworth, G.E. Karniadakis, Tempered fractional Sturm-Liouville eigenproblems. SIAM J. Sci. Comput 37 (2015), pp. A1777–A1800. doi: 10.1137/140985536
  • M. Zayernouri, G.E. Karniadakis, Fractional Sturm–liouville eigen-problems: theory and numerical approximation. J. Comput. Phys 252 (2013), pp. 495–517. doi: 10.1016/j.jcp.2013.06.031
  • M. Zayernouri, A. Matzavinos, Fractional Adams–bashforth/moulton methods: An application to the fractional Keller–segel chemotaxis system. J. Comput. Phys 317 (2016), pp. 1–14. doi: 10.1016/j.jcp.2016.04.041
  • Y. Zheng-wen, Y. Ting-qing, An equation of motion for a thick viscoelastic plate. Appl. Math. Mech 13 (1992), pp. 477–486. doi: 10.1007/BF02450738
  • Z. Zheng-You, L. Gen-Guo, C. Chang-Jun, Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation. Appl. Math. Mech 23 (2002), pp. 1–12. doi: 10.1007/BF02437724
  • J. Zhou, D. Xu, H. Chen, A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Applied Math 8 (2018), pp. 181–193. doi: 10.4208/eajam.260617.151117a
  • Y. Zhou, Q. Wang, D. Shi, et al., Exact solutions for the free in-plane vibrations of rectangular plates with arbitrary boundary conditions. Int. J. Mech. Sci 130 (2017), pp. 1–10. doi: 10.1016/j.ijmecsci.2017.06.004
  • Y.F. Zhou, Z.M. Wang, Transverse vibration characteristics of axially moving viscoelastic plate. Appl. Math. Mech 28(2) (2007), pp. 209–218. doi: 10.1007/s10483-007-0209-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.