392
Views
16
CrossRef citations to date
0
Altmetric
Review

Viscous dissipation and Joule heating in MHD Marangoni boundary layer flow and radiation heat transfer of Cu–water nanofluid along particle shapes over an exponential temperature

&
Pages 943-958 | Received 09 May 2018, Accepted 31 Dec 2018, Published online: 10 Apr 2019

References

  • F. Ali, M. Gohar and I. Khan, MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration, J. Mol. Liq. 223 (2016), pp. 412–419. doi: 10.1016/j.molliq.2016.08.068
  • E.H. Aly and A. Ebaid, Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium, J. Mol. Liq. 215 (2016), pp. 625–639. doi: 10.1016/j.molliq.2015.12.108
  • P.D. Ariel, Computation of MHD flow due to moving boundaries, Int. J. Comput. Math. 86 (2009), pp. 2165–2180. doi: 10.1080/00207160802272271
  • A. Aziz and R.J. Lopez, Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, Int. J. Therm. Sci. 50 (2011), pp. 1523–1531. doi: 10.1016/j.ijthermalsci.2011.03.014
  • I.C. Bang and S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3 - water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transf. 48 (2005), pp. 2407–2419. doi: 10.1016/j.ijheatmasstransfer.2004.12.047
  • S. Chaudhary and M.K. Choudhary, Heat and mass transfer by MHD flow near the stagnation point over a stretching or shrinking sheet in a porous medium, Indian J. Pure Appl. Phys. 54 (2016), pp. 209–217.
  • S. Chaudhary and M.K. Choudhary, Finite element analysis of magnetohydrodynamic flow over flat surface moving in parallel free stream with viscous dissipation and Joule heating, Eng. Comput. 35 (2018), pp. 1675–1693. doi: 10.1108/EC-02-2017-0062
  • S. Chaudhary and M.K. Choudhary, Partial slip and thermal radiation effects on hydromagnetic flow over an exponentially stretching surface with suction or blowing, Therm. Sci. 22 (2018), pp. 797–808. doi: 10.2298/TSCI160127150C
  • S. Chaudhary, M.K. Choudhary and R. Sharma, Effects of thermal radiation on hydromagnetic flow over an unsteady stretching sheet embedded in a porous medium in the presence of heat source or sink, Meccanica 50 (2015), pp. 1977–1987. doi: 10.1007/s11012-015-0137-9
  • S. Chaudhary and P. Kumar, MHD forced convection boundary layer flow with a flat plate and porous substrate, Meccanica 49 (2014), pp. 69–77. doi: 10.1007/s11012-013-9773-0
  • C.H. Chen, Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface, Phys. Lett. A 370 (2007), pp. 51–57. doi: 10.1016/j.physleta.2007.05.024
  • L. Chen, H. Xie, Y. Li and W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochim. Acta 477 (2008), pp. 21–24. doi: 10.1016/j.tca.2008.08.001
  • S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Publ. Fed 231ASME (1995), pp. 99–106.
  • P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.
  • A.S. Dogonchi, K. Divsalar and D.D. Ganji, Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation, Comput. Methods Appl. Mech. Eng. 310 (2016), pp. 58–76. doi: 10.1016/j.cma.2016.07.003
  • R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model. 37 (2013), pp. 1451–1467. doi: 10.1016/j.apm.2012.04.004
  • R. Ellahi, S.Z. Alamri, A. Basit and A. Majeed, Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation, J. Taibah Univ. Sci. 12 (2018), pp. 476–482. doi: 10.1080/16583655.2018.1483795
  • R. Ellahi, A. Zeeshana, N. Shehzada and S.Z. Alamrib, Structural impact of Kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: Application of cooling process, J. Mol. Liq. 264 (2018), pp. 607–615. doi: 10.1016/j.molliq.2018.05.103
  • T. Gambaryan-Roisman, Modulation of Marangoni convection in liquid films, Adv. Colloid Interface Sci. 222 (2015), pp. 319–331. doi: 10.1016/j.cis.2015.02.003
  • T. Hayat, M. Imtiaz and A. Alsaedi, Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous dissipation and Joule heating, Adv. Powder Technol. 27 (2016), pp. 1301–1308. doi: 10.1016/j.apt.2016.04.024
  • T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi and T. Yasmeen, Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation, Int. J. Heat Mass Transf. 106 (2017), pp. 810–815. doi: 10.1016/j.ijheatmasstransfer.2016.08.115
  • F. Hussain, R. Ellahi and A. Zeeshan, Mathematical models of electro-magnetohydrodynamic multiphase flows synthesis with nano-sized Hafnium Particles, Appl. Sci. 8 (2018), pp. 275. doi: 10.3390/app8020275
  • R. Idris and I. Hashim, Effects of controller and cubic temperature profile on onset of Benard-Marangoni convection in ferrofluid, Int. Commun. Heat Mass Transf. 37 (2010), pp. 624–628. doi: 10.1016/j.icheatmasstransfer.2009.11.015
  • M. Ilbas, The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling, Int. J. Hydrogen Energy 30 (2005), pp. 1113–1126. doi: 10.1016/j.ijhydene.2004.10.009
  • R.N. Jat and S. Chaudhary, Unsteady magnetohydrodynamic boundary layer flow over a stretching surface with viscous dissipation and Joule heating, Il Nuovo Cimento B 124 (2009), pp. 53–59.
  • R.N. Jat and S. Chaudhary, Radiation effects on the MHD flow near the stagnation point of a stretching sheet, Z. Angew. Math. Phys. 61 (2010), pp. 1151–1154. doi: 10.1007/s00033-010-0072-5
  • T. Katsumata, S. Komuro and H. Aizawa, Photoluminescence and thermal radiation from Eu and Al doped SiO2 for fiber-optic thermometer application, J. Lumin. 154 (2014), pp. 549–552. doi: 10.1016/j.jlumin.2014.05.036
  • H.J. Kim, S.H. Lee, S.B. Kim and S.P. Jang, The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids, Int. J. Heat Mass Transf. 92 (2016), pp. 572–577. doi: 10.1016/j.ijheatmasstransfer.2015.09.013
  • Y. Lin and Y. Jiang, Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation, Int. J. Heat Mass Transf. 123 (2018), pp. 569–582. doi: 10.1016/j.ijheatmasstransfer.2018.02.103
  • Y. Lin, B. Li, L. Zheng and G. Chen, Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature, Powder Technol. 301 (2016), pp. 379–386. doi: 10.1016/j.powtec.2016.06.029
  • B. Mahanthesh and B.J. Gireesha, Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension, Results Phys. 8 (2018), pp. 869–878. doi: 10.1016/j.rinp.2018.01.023
  • M. Mahmoodi and S.M. Hashemi, Numerical study of natural convection of a nanofluid in C-shaped enclosures, Int. J. Therm. Sci. 55 (2012), pp. 76–89. doi: 10.1016/j.ijthermalsci.2012.01.002
  • R. Mohebbi and M.M. Rashidi, Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle, J. Taiwan Inst. Chem. Eng. 72 (2017), pp. 70–84. doi: 10.1016/j.jtice.2017.01.006
  • D. Pal and H. Mondal, Influence of chemical reaction and thermal radiation on mixed convection heat and mass transfer over a stretching sheet in Darcian porous medium with Soret and Dufour effects, Energy Convers. Manag. 62 (2012), pp. 102–108. doi: 10.1016/j.enconman.2012.03.017
  • A.M. Rashad, Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge, J. Magn. Magn. Mater. 422 (2017), pp. 25–31. doi: 10.1016/j.jmmm.2016.08.056
  • V.J. Rossow, On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field, NACA Technical Reports, 1, 1957, pp. 489–508.
  • M. Seaid and M. El-Amrani, Finite element P1 solution of unsteady thermal flow past a circular cylinder with radiation, Int. J. Comput. Math. 85 (2008), pp. 641–656. doi: 10.1080/00207160601167060
  • K.M. Shirvan, M. Mamourian, S. Mirzakhanlari and R. Ellahi, Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology, Powder Technol. 313 (2017), pp. 99–111. doi: 10.1016/j.powtec.2017.02.065
  • M. Turkyilmazoglu, Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chem. Eng. Sci. 84 (2012), pp. 182–187. doi: 10.1016/j.ces.2012.08.029
  • M. Turkyilmazoglu, A note on the correspondence between certain nanofluid flows and standard fluid flows, J. Heat Transf. 137 (2015), pp. 024501.
  • M. Turkyilmazoglu, Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface, Commun. Nonlinear Sci. Numer. Simul. 63 (2018), pp. 373–379. doi: 10.1016/j.cnsns.2018.04.002
  • S.M. Vanaki and H.A. Mohammed, Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs, Int. Commun. Heat Mass Transf. 67 (2015), pp. 176–188. doi: 10.1016/j.icheatmasstransfer.2015.07.004
  • Y. Xuan and Q. Li, Heat transfer enhancement of nanofuids, Int. J. Heat Fluid Flow 21 (2000), pp. 58–64. doi: 10.1016/S0142-727X(99)00067-3
  • T. Zhang, Y. Qian and Y.G. HuangFu, Two-level finite element variational multiscale method based on bubble functions for the steady incompressible MHD flow, Int. J. Comput. Math. 94 (2017), pp. 515–535. doi: 10.1080/00207160.2015.1115023
  • Y. Zhang and L. Zheng, Similarity solutions of Marangoni convection boundary layer flow with gravity and external pressure, Chin. J. Chem. Eng. 22 (2014), pp. 365–369. doi: 10.1016/S1004-9541(14)60040-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.