318
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical solution of the conformable differential equations via shifted Legendre polynomials

&
Pages 1016-1028 | Received 03 Jul 2018, Accepted 15 Jan 2019, Published online: 15 Apr 2019

References

  • W.M. Abd-Elhameed and Y.H. Youssri, Spectral solutions for fractional differential equations via a Novel Lucas operational matrix of fractional derivatives, Rom. J. Phys. 61 (2016), pp. 795–813.
  • T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), pp. 57–66. doi: 10.1016/j.cam.2014.10.016
  • O. Acan, O. Firat, Y. Keskin, and G. Oturanc, Conformable variational iteration method, New Trend. Math. Sci. 5 (2017), pp. 172–178. doi: 10.20852/ntmsci.2017.135
  • T. Allahviranloo, Z. Gouyandeh, and A. Armand, Numerical solutions for fractional differential equations by Tau-Collocation method, Appl. Math. Comput. 271 (2015), pp. 979–990.
  • M.H.T. Alshbool, A.S. Bataineh, I. Hashim, and O. Rasit Isik, Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions, JKSUS 29 (2017), pp. 1–18.
  • D.R. Anderson and D.J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J. Math. Phys. 56 (2015), p. 063502. doi: 10.1063/1.4922018
  • C. Bota and B. Caruntu, Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the polynomial least squares method, Chaos Solitons Fractals 102 (2017), pp. 339–345. doi: 10.1016/j.chaos.2017.05.002
  • J. Cang, T. Tan, H. Xu, and S.J. Liao, Series solutions of non-linear riccati differential equations with fractional order, Chaos Solitons Fractals 40 (2009), pp. 1–9. doi: 10.1016/j.chaos.2007.04.018
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
  • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), pp. 2364–2373. doi: 10.1016/j.camwa.2011.07.024
  • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 35 (2011), pp. 5662–5672. doi: 10.1016/j.apm.2011.05.011
  • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model. 36 (2012), pp. 4931–4943. doi: 10.1016/j.apm.2011.12.031
  • E.H. Doha, W.M. Abd-Elhameed, and Y.H. Youssri, Fully Legendre spectral galerkin algorithm for solving linear one-dimensional telegraph type equation, Int. J. Comput. Meth. In press. doi:10.1142/S0219876218501189.
  • E. Hesameddini and E. Asadollahifar, Numerical solution of multi-order fractional differential equations via the sinc collocation method, IJNAO 5 (2015), pp. 37–48.
  • A. Isah and C. Phang, New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials, JKSUS. 31 (2019), pp.1–7. doi:10.1016/j.jksus.2017.02.001.
  • H. Jafari, N. Kadkhoda, H. Tajadodi, and S.A. Hosseini, Homotopy perturbation pade technique for solving fractional riccati differential equations, Int. J. Nonlinear Sci. Numer. Simul. 11 (2010), pp. 271–5.
  • H. Jafari, H. Tajadodi, and D. Baleanu, A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials, Fract. Calc. Appl. Anal. 16 (2013), pp. 109–122. doi: 10.2478/s13540-013-0008-9
  • H. Jafari, H. Tajadodi, and D. Baleanu, A numerical approach for fractional order Riccati differential equation using B-spline operational matrix, Fract. Calc. Appl. Anal. 18 (2015), pp. 387–399. doi: 10.1515/fca-2015-0025
  • B.F. Kazemi and H. Jafari, Error estimate of the MQ-RBF collocation method for fractional differential equations with Caputo-Fabrizio derivative, Math. Sci. 11 (2017), pp. 297–305. doi: 10.1007/s40096-017-0232-2
  • M.M. Khader, The use of generalized Laguerre polynomials in spectral methods for solving fractional delay differential equations, J. Comput. Nonlinear Dynam. 8 (2013), pp. 1–5. doi: 10.1115/1.4024852
  • M.M. Khader, Numerical treatment for solving fractional logistic differential equation, Diff. Equat. Dynam. Syst. 24 (2016), pp. 99–107. doi: 10.1007/s12591-014-0207-9
  • M.M. Khader, T.S. El Danaf, and A.S. Hendy, Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials, J. Food Compos. Anal. 3 (2012), pp. 1–14.
  • R. Khalil, M.A. Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), pp. 65–70. doi: 10.1016/j.cam.2014.01.002
  • H. Khalil, R.A. Khan, M.H. Al-Smadi, A.A. Freihat, and N. Shawagfeh, New operational matrix for shifted legendre polynomials and fractional differential equations with variable coefficients, Punjab Univ. J. Math. 47 (2015), pp. 1–23.
  • A. Khitab, S. Lorente, and J.P. Ollivier, Predictive model for chloride penetration through concrete, Mag. Concrete Res. 57(9) (2005), pp. 511–520. doi: 10.1680/macr.2005.57.9.511
  • N.N. Lebedev and R.A. Silverman (Translator), Special Functions and Their Applications, Prentice Hall, Englewood Cliffs, NJ, 1965.
  • Y. Li, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), pp. 2284–2292. doi: 10.1016/j.cnsns.2009.09.020
  • X. Li, Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 3934–3946. doi: 10.1016/j.cnsns.2012.02.009
  • F. Mohammadi and C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, J. Comput. Appl. Math. 339 (2018), pp. 306–316. doi: 10.1016/j.cam.2017.09.031
  • F. Mohammadi and S.T. Mohyud-Din, A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Adv. Diff. Equ. 269 (2016), pp. 2–14.
  • Z. Odibat and S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals 36 (2008), pp. 167–174. doi: 10.1016/j.chaos.2006.06.041
  • K. Parand and M. Delkhosh, Operational matrices to solve nonlinear Riccati differential equations of arbitrary order, S. Pb. Phys. Math. J. 3 (2017), pp. 242–254.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), pp. 367–386.
  • M. Rehman and R.A. Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), pp. 4163–4173. doi: 10.1016/j.cnsns.2011.01.014
  • A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010), pp. 1326–1336. doi: 10.1016/j.camwa.2009.07.006
  • M.D. Thomas and P.B. Bamforth, Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cem. Concr. Res. 29(4) (1999), pp. 487–495. doi: 10.1016/S0008-8846(98)00192-6
  • E. Unal and A. Gokdgan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik 128 (2017), pp. 264–273. doi: 10.1016/j.ijleo.2016.10.031
  • Y. Yang, Solving a nonlinear multi-order fractional differential equation using Legendre Pseudo-Spectral method, Appl. Math. 4 (2013), pp. 113–118. doi: 10.4236/am.2013.41020
  • S. Yang, L. Wang, and S. Zhang, Conformable derivative: Application to non-Darcian flow in low-permeability porous media, Appl. Math. Lett. 79 (2018), pp. 105–110. doi: 10.1016/j.aml.2017.12.006
  • Y.H. Youssri and W.M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys. 63 (2018), pp. 1–16.
  • S. Yuzbasi, Numerical solutions of fractional Riccati type differential equations by means of the bernstein polynomials, Appl. Math. Comput. 219 (2013), pp. 6328–6343.
  • D. Zhao, X. Pan, and M. Luo, A new framework for multivariate general conformable fractional calculus and potential applications, Physica A 510 (2018), pp. 271–280. doi: 10.1016/j.physa.2018.06.070
  • H.W. Zhou, S. Yang, and S.Q. Zhang, Conformable derivative approach to anomalous diffusion, Physica A 491 (2018), pp. 1001–1013. doi: 10.1016/j.physa.2017.09.101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.