75
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An efficient method for mixed integral equations with phase lag

Pages 1170-1182 | Received 15 Nov 2018, Accepted 31 Mar 2019, Published online: 22 Apr 2019

References

  • M.A. Abdou, Fredholm Volterra integral equation and generalized potential kernel, Appl. Math. Comput. 131 (2002), pp. 81–94.
  • M.A. Abdou and M. Basseem, Solution of mixed integral equation in position and time using spectral relationships, J. Assoc. Arab Univ. Basic Appl. Sci. 23 (2017), pp. 52–56. doi:10.1016/j.jaubas.2016.05.001.
  • M.A. Abdou, M.E. Nasr, and M.A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. Fixed Point Theory Appl. 20(1) (2018), p. 5. doi: 10.1007/s11784-018-0490-0
  • A. Akbarzadeh, J. Fu, and Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng. 38(1) (2014), pp. 155. doi: 10.1139/tcsme-2014-0010
  • S.E.A. Alhazmi, A computational approach for solving singular integrals equation with Abel kernel and logarithmic singularities using Block Pulse functions, Int. J. Sci. Res. 4(1) (2015), pp. 538–548.
  • A. Alipanah and M. Dehghan, Numerical solution of the nonlinear Fredholm integral equations by positive definite functions, Appl. Math. Comput. 190 (2007), pp. 1754–1761.
  • S. Andras, Weakly singular Volterra and Fredholm Volterra integral equations, Stud. Univ. Babes-Bolyai Math. 48(3) (2003), pp. 147–155.
  • I. Babuska, U. Banerjee, J.E. Osborn, and Q. Zhang, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Eng. 198 (2009), pp. 2886–2897. doi: 10.1016/j.cma.2009.04.008
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
  • S. Chirit, On the time differential dual-phase-lag thermoelastic model, Meccanica 52(1–2) (2017), pp. 349–361. doi: 10.1007/s11012-016-0414-2
  • C. Chniti and S.E.A. Alhazmi, On the numerical solution of Volterra-Fredholm integral equations with logarithmic kernel using smoothing transformation, Int. J. Appl. Math. Res. 4(1) (2015), p. 183. doi: 10.14419/ijamr.v4i1.4081
  • W. Dai, F. Han, and Z. Sun, Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction, Int. J. Heat. Mass. Transf. 64 (2013), pp. 966–975. doi: 10.1016/j.ijheatmasstransfer.2013.05.005
  • G.E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
  • R.L. Hardy, Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968–1988, Comput. Math. Appl. 19(8–9) (1990), pp. 163–208. doi: 10.1016/0898-1221(90)90272-L
  • E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19(8–9) (1990), pp. 127–145. doi: 10.1016/0898-1221(90)90270-T
  • E.J. Kansa, Multiquadrics – A scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19(8–9) (1990), pp. 147–161. doi: 10.1016/0898-1221(90)90271-K
  • E. Majchrzak and L. Turchan, The general boundary element method for 3D dual-phase lag model of bioheat transfer, Eng. Anal. Bound. Elem. 50 (2015), pp. 76–82. doi: 10.1016/j.enganabound.2014.07.012
  • S. Micula, An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput. 270 (2015), pp. 935–942. doi: 10.1016/j.amc.2015.08.110
  • S. Micula, On some iterative numerical methods for a Volterra functional integral equation of the second kind, J. Fixed Point Theory Appl. 19(3) (2017), pp. 1815–1824. doi: 10.1007/s11784-016-0336-6
  • F. Mirzaee and E. Hadadiyan, Approximate solutions for mixed nonlinear Volterra Fredholm type integral equations via modified block-pulse functions, J. Assoc. Arab Univ. Basic Appl. Sci. 12 (2012), pp. 65–73.
  • M. Nili Ahmadabadi and H. Laeli Dastjerdi, Numerical treatment of nonlinear Volterra integral equations of Urysohn type with proportional delay, Int. J. Comput. Math. (2019), pp. 1–12. Just Accepted.
  • K. Parand and J.A. Rad, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput. 218 (2012), pp. 5292–5309.
  • V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60 (1985), pp. 187–207. doi: 10.1016/0021-9991(85)90002-6
  • H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
  • M. Zerroukat, H. Power, and C.S. Chen, A numerical method for heat transfer problem using collocation and radial basis functions, Int. J. Numer. Meth. Eng. 42 (1992), pp. 1263–1278. doi: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.