257
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Bingham fluid flow simulation in a lid-driven skewed cavity using the finite-volume method

, &
Pages 1212-1233 | Received 09 May 2018, Accepted 17 Feb 2019, Published online: 17 May 2019

References

  • T.A. AbdelMigid, K.M. Saqr, M.A. Kotb and A.A. Aboelfarag, Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code, Alex. Eng. J.
  • M. Bercovier and M. Engelman, A finite-element method for incompressible non-Newtonian flows, J. Comput. Phys. 36(3) (1980), pp. 313–326.
  • E. Brakkee, P. Wesseling and C. Kassels, Schwarz domain decomposition for the incompressible Navier–Stokes equations in general co-ordinates, Internat. J. Numer. Methods Fluids 32(2) (2000), pp. 141–173.
  • R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications, Butterworth-Heinemann, London, 1999.
  • I. Demirdzić, Ž. Lilek and M. Perić, Fluid flow and heat transfer test problems for non-orthogonal grids: Bench-mark solutions, Internat. J. Numer. Methods Fluids 15(3) (1992), pp. 329–354.
  • D.D. dos Santos, S. Frey, M.F. Naccache and P. de Souza Mendes, Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity, J. Non-Newton. Fluid Mech. 166(12–13) (2011), pp. 667–679.
  • E. Erturk and B. Dursun, Numerical solutions of 2-D steady incompressible flow in a driven skewed cavity, ZAMM J. Appl. Math. Mech. 87(5) (2007), pp. 377–392.
  • M.M. Gupta, R.P. Manohar and B. Noble, Nature of viscous flows near sharp corners, Comput. Fluids 9(4) (1981), pp. 379–388.
  • A. J. M. W. P. Jones and F. di. Mare, LES-BOFFIN: User's Guide, Imperial College, London, 2002. 1–60.
  • M. Louaked, L. Hanich and K. Nguyen, An efficient finite difference technique for computing incompressible viscous flows, Internat. J. Numer. Methods Fluids 25(9) (1997), pp. 1057–1082.
  • R. Mahmood, N. Kousar, M. Yaqub and K. Jabeen, Numerical simulations of the square lid driven cavity flow of Bingham fluids using nonconforming finite elements coupled with a direct solver, Adv. Math. Phys.2017
  • E. Mitsoulis and T. Zisis, Flow of Bingham plastics in a lid-driven square cavity, J. Non-Newton. Fluid Mech. 101(1) (2001), pp. 173–180.
  • E. Mitsoulis, On creeping drag flow of a viscoplastic fluid past a circular cylinder: Wall effects, Engineering ScienceChem. Eng. Sci. 59(4) (2004), pp. 789–800.
  • E. Mitsoulis, Flows of viscoplastic materials: Models and computations, Rheol. Rev. 2007 (2007), pp. 135–178.
  • E. Mitsoulis, S. Abdali and N. Markatos, Flow simulation of Herschel–Bulkley fluids through extrusion dies, Canad. J. Chem. Eng. 71(1) (1993), pp. 147–160.
  • E. Mitsoulis, S. Marangoudakis, M. Spyratos, T. Zisis and N.A. Malamataris, Pressure-driven flows of Bingham plastics over a square cavity, ASME J. Fluids Eng. 128(5) (2006), pp. 993–1003.
  • E. Mitsoulis and A. Matsoukas, Free surface effects in squeeze flow of Bingham plastics, J. Non-Newton. Fluid Mech. 129(3) (2005), pp. 182–187.
  • M.M. Molla, LES of pulsatile flow in the models of arterial stenosis and aneurysm, Ph.D. thesis, University of Glasgow, UK, June 2009.
  • P. Neofytou, A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Adv. Eng. Softw. 36(10) (2005), pp. 664–680.
  • E. O'Donovan and R. Tanner, Numerical study of the Bingham squeeze film problem, J. Non-Newton. Fluid Mech. 15(1) (1984), pp. 75–83.
  • C. Oosterlee, P. Wesseling, A. Segal and E. Brakkee, Benchmark solutions for the incompressible Navier–Stokes equations in general co-ordinates on staggered grids, Internat. J. Numer. Methods Fluids 17(4) (1993), pp. 301–321.
  • J.R. Pacheco and R.E. Peck, Nonstaggered boundary-fitted coordinate method for free surface flows, Numer. Heat Trans.: Part B 37(3) (2000), pp. 267–291.
  • T.C. Papanastasiou, Flows of materials with yield, J. Rheol. 31(5) (1987), pp. 385–404.
  • S. Patel and R. Chhabra, Steady flow of Bingham plastic fluids past an elliptical cylinder, J. Non-Newton. Fluid Mech. 202 (2013), pp. 32–53.
  • M. Perić, Analysis of pressure–velocity coupling on nonorthogonal grids, Numer. Heat Trans. 17(1) (1990), pp. 63–82.
  • A. Rafiee, Modelling of generalized Newtonian lid-driven cavity flow using an SPH method, ANZIAM J. 49(3) (2008), pp. 411–422.
  • D.G. Roychowdhury, S.K. Das and T. Sundararajan, An efficient solution method for incompressible N–S equations using non-orthogonal collocated grid, Internat. J. Numer. Methods Engrg. 45(6) (1999), pp. 741–763.
  • S. Thohura, M.M. Molla and M. Sarker, Numerical simulation of Bingham fluid flows in a lid-driven skewed cavity, AIP Conference Proceedings, Vol. 1980, AIP Publishing, 2018, p. 040022.
  • S. Thohura, M.M. Molla and M.M.A. Sarker, Numerical simulation of non-Newtonian power-law fluid flow in a lid-driven skewed cavity, Int. J. Appl. Comput. Math. 5(14) (2019), pp. 1–29.
  • R.L. Thompson and E.J. Soares, Viscoplastic dimensionless numbers, J. Non-Newton. Fluid Mech. 238 (2016), pp. 57–64.
  • J.F. Thompson, F.C. Thames and C.W. Mastin, Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J. Comput. Phys. 15(3) (1974), pp. 299–319.
  • P. Tucker and Z. Pan, A Cartesian cut cell method for incompressible viscous flow, Appl. Math. Model. 24(8) (2000), pp. 591–606.
  • C. Rhie and W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J. 21(11) (1983), pp. 1525–1532.
  • A. Shklyar and A. Arbel, Numerical method for calculation of the incompressible flow in general curvilinear co-ordinates with double staggered grid, Internat. J. Numer. Methods Fluids 41(12) (2003), pp. 1273–1294.
  • T. Störtkuhl, C. Zenger and S. Zimmer, An asymptotic solution for the singularity at the angular point of the lid driven cavity, Int. J. Heat Fluid Flow 4(1) (1994), pp. 47–59.
  • A. Syrakos, G.C. Georgiou and A.N. Alexandrou, Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method, J. Non-Newton. Fluid Mech. 195 (2013), pp. 19–31.
  • A. Syrakos, G.C. Georgiou and A.N. Alexandrou, Performance of the finite volume method in solving regularised Bingham flows: Inertia effects in the lid-driven cavity flow, J. Non-Newton. Fluid Mech. 208 (2014), pp. 88–107.
  • A. Syrakos, G.C. Georgiou and A.N. Alexandrou, Cessation of the lid-driven cavity flow of Newtonian and Bingham fluids, Rheol. Acta 55(1) (2016), pp. 51–66.
  • D. Vola, L. Boscardin and J. Latché, Laminar unsteady flows of Bingham fluids: A numerical strategy and some benchmark results, J. Comput. Phys. 187(2) (2003), pp. 441–456.
  • H. Xu and C. Zhang, Study of the effect of the non-orthogonality for non-staggered grids – the results, Internat. J. Numer. Methods Fluids 29(6) (1999), pp. 625–644.
  • T. Zisis and E. Mitsoulis, Viscoplastic flow around a cylinder kept between parallel plates, J. Non-Newton. Fluid Mech. 105(1) (2002), pp. 1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.