126
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Generalized plane wave discontinuous Galerkin methods for nonhomogeneous Helmholtz equations with variable wave numbers

&
Pages 920-941 | Received 08 May 2018, Accepted 28 Apr 2019, Published online: 15 May 2019

References

  • A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation, ESAIM: M2AN Math. Model. Numer. Anal. 42 (2008), pp. 925–940. doi: 10.1051/m2an:2008033
  • O. Cessenat and B. Despres, Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional helmholtz problem, SIAM J. Numer. Anal. 35(1) (1998), pp. 255–299. doi: 10.1137/S0036142995285873
  • Y. Du and H. Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal. 53 (2015), pp. 782–804. doi: 10.1137/140953125
  • U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci. 5 (2007), pp. 665–678. doi: 10.4310/CMS.2007.v5.n3.a8
  • R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49(1) (2011), pp. 264–284. doi: 10.1137/090761057
  • R. Hiptmair, A. Moiola and I. Perugia, Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes, Appl. Numer. Math. 79 (2014), pp. 79–91. doi: 10.1016/j.apnum.2012.12.004
  • R. Hiptmair, A. Moiola and I. Perugia, A survey of Trefftz methods for the Helmholtz equation, Lect. Notes Comput. Sci. Eng., Springer, 2016. pp. 237–278.
  • Q. Hu and L. Yuan, A weighted variational formulation based on plane wave basis for discretization of Helmholtz equations, Int. J. Numer. Anal. Model. 11 (2014), pp. 587–607.
  • Q. Hu and L. Yuan, A plane wave least-squares method for time-Harmonic Maxwell's equations in absorbing media, SIAM J. Sci. Comput. 36 (2014), pp. A1911–A1936. doi: 10.1137/130928509
  • Q. Hu and L. Yuan, A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations, Adv. Comput. Math. 44 (2018), pp. 245–275. doi: 10.1007/s10444-017-9542-z
  • T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation, J. Comput. Phys. 223 (2007), pp. 731–758. doi: 10.1016/j.jcp.2006.10.016
  • T. Huttunen, P. Monk, F. Collino and J. Kaipio, The ultra-weak variational formulation for elastic wave problems, SIAM J. Sci. Comput., 25(5) (2004), pp. 1717–1742. doi: 10.1137/S1064827503422233
  • L. Imbert-Gérard, Interpolation properties of generalized plane waves, Numer. Math. 131 (2015), pp. 683–711. doi: 10.1007/s00211-015-0704-y
  • L. Imbert-Gérard and P. Monk, Numerical simulation of wave propagation in inhomogeneous media using generalized plane waves, ESAIM: M2AN Math. Model. Numer. Anal. 51 (2017), pp. 1387–1406.
  • S. Kapita, P. Monk and T. Warburton, Residual-based adaptivity and pwdg methods for the Helmholtz equation, SIAM J. Sci. Comput. 37 (2015), pp. A1525–A1553. doi: 10.1137/140967696
  • A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Z. Angew. Math. Phys. 62 (2011), pp. 809–837. doi: 10.1007/s00033-011-0147-y
  • P. Monk and D. Wang, A least-squares method for the Helmholtz equation, Comput. Meth. Appl. Mech. Engng. 175 (1999), pp. 121–136. doi: 10.1016/S0045-7825(98)00326-0
  • N. Sloane, Tables of spherical codes (with collaboration of R.H. Hardin, W.D. Smith and others) published electronically at http://www2.research.att.com/njas/packings, 2000.
  • E. Trefftz, Ein gegenstuck zum ritzschen verfahren, Sec. Inte. Cong. Appl. Mech. (1926), pp. 131–137.
  • L. Yuan, The plane wave discontinuous Galerkin method combined with local spectral finite elements for the wave propagation in anisotropic media, Numer. Math. Theor. Meth. Appl. (2018). doi:10.4208/nmtma.OA-2017-0139.
  • L. Yuan and Q. Hu, A solver for Helmholtz system generated by the discretization with wave shape functions, Adv. Appl. Math. Mech. 5 (2013), pp. 791–808. doi: 10.4208/aamm.12-m12142
  • L. Yuan and Q. Hu, Error analysis of the plane wave discontinuous Galerkin method for Maxwell's equations in anisotropic media, Commun. Comput. Phys. (2018). doi:10.4208/cicp.OA-2018-0104.
  • L. Yuan and Q. Hu, The plane wave methods combined with local spectral finite elements for the wave propagation in anisotropic media, Adv. Appl. Math. Mech. 10(5) (2018), pp. 1126–1157. doi: 10.4208/aamm.OA-2017-0272
  • L. Yuan and Q. Hu, Comparisons of three kinds of plane wave methods for the Helmholtz equation and time-harmonic Maxwell equations with complex wave numbers, J. Comput. Appl. Math. 344 (2018), pp. 323–345. doi: 10.1016/j.cam.2018.05.024
  • L. Yuan, Q. Hu and H. An, Parallel preconditioners for plane wave Helmholtz and Maxwell systems with large wave numbers, Int. J. Numer. Anal. Model. 13(5) (2016), pp. 802–819.
  • L. Yuan and Y. Liu, A Trefftz discontinuous Galerkin method for time-harmonic elastic wave problems, Comput. Appl. Math. (2019), accepted for publication.
  • L. Zhu and H. Wu, Preasymptotic error analysis of cip-fem and fem for helmholtz equation with large number, SIAM J. Numer. Anal. 51 (2013), pp. 1828–1852. doi: 10.1137/120874643

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.