183
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Conservative Fourier pseudo-spectral schemes for general Klein–Gordon–Schrödinger equations

, &
Pages 1339-1362 | Received 19 Dec 2018, Accepted 30 Apr 2019, Published online: 21 May 2019

References

  • G. Akrivis, V. Dougalis and O. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), pp. 31–53. doi: 10.1007/BF01385769
  • Z. Asgari and S. Hosseini, Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods, Comput. Phys. Commun. 184 (2013), pp. 565–572. doi: 10.1016/j.cpc.2012.10.009
  • W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Math. Comput. 82 (281) (2013), pp. 99–128. doi: 10.1090/S0025-5718-2012-02617-2
  • C. Bardos and E. Tadmor, Stability and spectral convergence of Fourier method for nonlinear problems: On the shortcomings of the 2/3 dealiasing method, Numer. Math. 129 (2015), pp. 749–782. doi: 10.1007/s00211-014-0652-y
  • D. Bai and J. Wang, The time-splitting Fourier spectral method for the coupled Schrödinger–Boussinesq equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), pp. 1201–1210. doi: 10.1016/j.cnsns.2011.08.012
  • W. Bao and L. Yang, Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations, J. Comput. Phys. 225 (2007), pp. 1863–1893. doi: 10.1016/j.jcp.2007.02.018
  • W. Bao and X. Zhao, A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime a UA method for Klein–Gordon–Schrödinger equation, Numer. Math. 135 (2017), pp. 833–873. doi: 10.1007/s00211-016-0818-x
  • P. Biler, Attractors for the system of Schrödinger and Klein–Gordon equations with Yukawa coupling, SIAM J. Math. Anal. 21 (5) (1990), pp. 1190–1212. doi: 10.1137/0521065
  • M. Cavalcanti and V. Cavalcanti, Global existence and uniform Klein–Gordon–Schrödinger equations, Nonlinear Differ. Equ. Appl. 7 (2000), pp. 285–307. doi: 10.1007/PL00001426
  • M. Dehghan and V. Mohammadi, Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein–Gordon–Schrödinger (KGS) equations, Comput. Math. Appl. 71 (2016), pp. 892–921. doi: 10.1016/j.camwa.2015.12.033
  • I. Fukuda and M. Tsutsumi, On coupled Klein–Gordon–Schrödinger equations II, J. Math. Anal. Appl. 66 (2) (1973), pp. 358–378. doi: 10.1016/0022-247X(78)90239-1
  • I. Fukuda and M. Tsutsumi, On coupled Klein–Gordon–Schrödinger equation. III. Higher order interaction, decay and blow-up, Jpn. Math. 24 (80) (1979), pp. 307–321.
  • Y. Gong, Q. Wang, Y. Wang and J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys. 328 (2017), pp. 354–370. doi: 10.1016/j.jcp.2016.10.022
  • B. Guo and Y. Li, Attractor for dissipative Klein–Gordon–Schrödinger equations in R3, J. Differ. Equ. 136 (1997), pp. 356–377. doi: 10.1006/jdeq.1996.3242
  • N. Hayashi, Global strong solution of coupled Klein–Gordon–Schrödinger equations, Funkcialaj Ekvacioj 29 (1986), pp. 299–307.
  • J. Hong, S. Jiang and C. Li, Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations, J. Comput. Phys. 228 (9) (2009), pp. 3517–3532. doi: 10.1016/j.jcp.2009.02.006
  • L. Kong, J. Hong and R. Liu, Long-term numerical simulation of the interaction between a neutron field and a neutral meson field by a symplectic-preserving scheme, J. Phys. A – Math. Theor. 41 (2008), pp. 1–17. doi: 10.1088/1751-8113/41/25/255207
  • L. Kong, L. Wang, S. Jiang and Y. Duan, Multi-symplectic Fourier pseudo-spectral integrators for Klein–Gordon–Schrödinger equations, Sci. China Math. 56 (5) (2013), pp. 915–932. doi: 10.1007/s11425-013-4575-3
  • L. Kong, J. Zhang, Y. Cao, Y. Duan and H. Huang, Semi-explicit symplectic partitioned Runge–Kutta Fourier pseudo-spectral scheme for Klein–Gordon–Schrödinger equations, Comput. Phys. Commun. 181 (2010), pp. 1369–1377. doi: 10.1016/j.cpc.2010.04.003
  • H. Lee and J. Lee, A semi-analytical Fourier spectral method for the Allen–Cahn equation, Comput. Math. Appl. 68 (2014), pp. 174–184. doi: 10.1016/j.camwa.2014.05.015
  • O. Masahito, Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal. Theory Method Appl. 27 (4) (1996), pp. 455–461. doi: 10.1016/0362-546X(95)00017-P
  • C. Miao and G. Xu, Global solution of the Klein–Gordon–Schrödinger system with rough data in R2+1, J. Differ. Equ. 227 (2006), pp. 365–405. doi: 10.1016/j.jde.2005.10.012
  • C. Miao and Y. Zhu, Low regularity global well-posedness for the Klein–Gordon–Schrödinger system with the higher-order Yukawa coupling, Differ. Integr. Equ. 20 (2007), pp. 643–656.
  • F. Natali and A. Pastor, Stability properties of periodic standing wave for Klein–Gordon–Schrödinger system, Commun. Pure Appl. Anal. 9 (2) (2017), pp. 413–430. doi: 10.3934/cpaa.2010.9.413
  • X. Pan and L. Zhang, High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein–Gordon equation, Nonlinear Anal. 92 (2013), pp. 108–118. doi: 10.1016/j.na.2013.07.003
  • E. Pindza and K. Owolabi, Fourier spectral method for higher order space fractional reaction–diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), pp. 112–128. doi: 10.1016/j.cnsns.2016.04.020
  • J. Shen, T. Tang and L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, 2011.
  • Q. Shi, W. Li and S. Wang, Well posedness in energy space for the nonlinear Klein–Gordon–Schrödinger system, Appl. Math. Comput. 251 (2015), pp. 55–64.
  • Q. Shi, S. Wang and Y. Li, Existence and uniqueness of energy solution to Klein–Gordon–Schrödinger equations, J. Differ. Equ. 252 (1) (2012), pp. 168–180. doi: 10.1016/j.jde.2011.09.025
  • Z. Sun, Numerical Methods of the Partial Differential Equation, Science Press, China, 2005.
  • Z. Sun and Q. Zhu, On Tsertsvadze's difference scheme for the Kuramoto–Tsuzuki equation, J. Comput. Appl. Math. 98 (2) (1998), pp. 289–300. doi: 10.1016/S0377-0427(98)00135-6
  • L. Wang, Y. Ma, L. Kong and Y. Duan, Symplectic Fourier pseudo-spectral schemes for Klein–Gordon–Schrödinger equation, China J. Comput. Phys. 28 (2) (2011), pp. 275–282.
  • J. Wang, Y. Wang and D. Liang, Analysis of a Fourier pseudo-spectral conservative scheme for the Klein–Gordon–Schrödinger equation, Int. J. Comput. Math. 95 (2018), pp. 36–60. doi: 10.1080/00207160.2017.1366460
  • T. Wang, X. Zhao and J. Jiang, Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein–Gordon–Schrödinger equation in high dimensions, Adv. Comput. Math. 44 (2017), pp. 477–503. doi: 10.1007/s10444-017-9557-5
  • S. Wang and L. Zhang, A class of conservative orthogonal spline collocation schemes for solving coupled Klein–Gordon–Schrödinger equations, Appl. Math. Comput. 203 (2008), pp. 799–812.
  • T. Wang and X. Zhao, Optimal l∞ error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions, Sci. China Math. 57 (2014), pp. 2189–2214. doi: 10.1007/s11425-014-4773-7
  • M. Wang and Y. Zhou, The periodic wave solutions for the Klein–Gordon–Schrödinger equations, Phys. Lett. A 318 (1) (2003), pp. 84–92. doi: 10.1016/j.physleta.2003.07.026
  • B. Wang, Classical global solution for non-linear Klein–Gordon–Schrödinger equation, Math. Methods Appl. Sci. 20 (1997), pp. 599–616. doi: 10.1002/(SICI)1099-1476(19970510)20:7<599::AID-MMA866>3.0.CO;2-7
  • T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation, J. Math. Anal. Appl. 412 (2014), pp. 155–167. doi: 10.1016/j.jmaa.2013.10.038
  • J. Wang, Conservative Fourier spectral scheme for the coupled Schrödinger–Boussinesq equations, Adv. Differ. Equ. 2018 (2018), pp. 1–19. doi: 10.1186/s13662-017-1452-3
  • P. Xanthopoulos and E. Georgios, A linearly implicit finite difference method for a Klein–Gordon–Schrödinger system modeling electron ion plasma waves, Discrete Contin. Dyn. Syst. Ser. B 10 (1) (2008), pp. 239–263. doi: 10.3934/dcdsb.2008.10.239
  • J. Xia, S. Han and M. Wang, The exact solitary wave solution for the Klein–Gordon–Schrödinger equations, Appl. Math. Mech. 23 (1) (2002), pp. 52–58.
  • Y. Xia, Fourier spectral methods for Degasperis–Procesi equation with discontinuous solutions, J. Sci. Comput. 61 (2014), pp. 584–603. doi: 10.1007/s10915-014-9839-8
  • J. Zhang and L. Kong, New energy-preserving schemes for Klein–Gordon–Schrödinger equations, Appl. Math. Model. 40 (2016), pp. 6969–6982. doi: 10.1016/j.apm.2016.02.026
  • L. Zhang, Convergence of a conservative difference scheme for a class of Klein–Gordon–Schrödinger equations in one space dimension, Appl. Math. Comput. 163 (2005), pp. 343–355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.