104
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering

, &
Pages 1412-1430 | Received 15 Jun 2018, Accepted 16 May 2019, Published online: 31 May 2019

References

  • H.J. Ahn, Vibration of a pendulum consisting of a bob suspended from a wire: The method of integral equations, Quart. Appl. Math. 39 (1981), pp. 109–117. doi: 10.1090/qam/613954
  • A. Alonso and A.D. Russo, Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods, J. Comput. Appl. Math 223 (2009), pp. 177–197. doi: 10.1016/j.cam.2008.01.008
  • A.B. Andreev and T.D. Todorov, Isoparametric finite element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal. 24 (2004), pp. 309–322. doi: 10.1093/imanum/24.2.309
  • M.G. Armentano, The effect of reduced integration in the steklov eigenvalue problem, ESAIM: Math. Model. Numer. Anal. 38(1) (2004), pp. 27–36. doi: 10.1051/m2an:2004002
  • M.G. Armentano and C. Padra, A posteriori error estimates for the steklov eigenvalue problem, Appl. Numer. Math. 58 (2008), pp. 593–601. doi: 10.1016/j.apnum.2007.01.011
  • I. Babuska and J. Osborn, Eigenvalue problems. in Finite Element Methods, Handbook of Numerical Analysis 2, Part 2, Elsevier Science Publishers, North-Holand, 1991, pp. 640–787.
  • S. Bergmann and M. Chiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.
  • A. Bermúdez, R. Rodriguez, and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math. 87 (2000), pp. 201–227. doi: 10.1007/s002110000175
  • H. Bi, Y. Zhang, and Y. Yang, Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem, Comput. Math. Appl. 2018. Available at https://doi.org/10.1016/j.camwa.2018.08.047.
  • D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), pp. 1–120. doi: 10.1017/S0962492910000012
  • J. Bramble and J. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972, pp. 387–408.
  • S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed., Springer-Verlag, New york, 2002.
  • F. Cakoni, D. Colton, S. Meng, and P. Monk, Stekloff eigenvalues in inverse scattering, SIAM J. Appl. Math. 76(4) (2016), pp. 1737–1763. doi: 10.1137/16M1058704
  • J. Canavati and A.A. Minzoni, A discontinuous Steklov problem with an application to water waves, J. Math. Anal. Appl. 69(2) (1979), pp. 540–558. doi: 10.1016/0022-247X(79)90165-3
  • L. Cao, L. Zhang, W. Allegretto, and Y. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal. 51(1) (2013), pp. 273–296. doi: 10.1137/110850876
  • F. Chatelin, Spectral Approximations of Linear Operators, Academic Press, New York, 1983.
  • L. Chen, An integrated finite element method package in MATLAB. Tech. Rep., University of California at Irvine, California, 2009.
  • P.G. Ciarlet, Basic error estimates for elliptic problems, in Finite Element Methods, Handbook of Numerical Analysis 2, Part I, P.G. Ciarlet and J.L. Lions, eds., Elsevier Science Publishers, North-Holand, 1991, pp. 21–343.
  • C. Conca, J. Planchard, and M. Vanninathanm, Fluid and Periodic Structures, John Wiley & Sons, New York, 1995.
  • J. Cullum and T. Zhang, Two-sided Arnoldi and nonsymmetric Lanczos algorithms, SIAM J. Matrix Anal. Appl. 24 (2002), pp. 303–319. doi: 10.1137/S0895479898339013
  • X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal. 46 (2008), pp. 295–324. doi: 10.1137/06067780X
  • M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics 1341, Springer, Berlin, 1988.
  • E.M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Numer. Anal. 31 (2011), pp. 914–946. doi: 10.1093/imanum/drp055
  • X. Han, Y. Li, and H. Xie, A multilevel correction method for Stekov eigenvalue problem by nonconforming finite element methods, Numer. Math. Theor. Meth. Appl. 8(3) (2015), pp. 383–405. doi: 10.4208/nmtma.2015.m1334
  • J. Han, Y. Yang, and H. Bi, A new multigrid finite element method for the transmission eigenvalue problems, Appl. Math. Computat. 292 (2017), pp. 96–106. doi: 10.1016/j.amc.2016.07.022
  • Q. Li, Q. Lin, and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Math. 58 (2013), pp. 129–151. doi: 10.1007/s10492-013-0007-5
  • Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comput. 84(291) (2015), pp. 71–88. doi: 10.1090/S0025-5718-2014-02825-1
  • J. Liu, J. Sun, and T. Turner, Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem, J. Sci. Comput. 79 (2019), pp. 1814–1831. doi: 10.1007/s10915-019-00913-6
  • J. Oden and J. Reddy, An Introduction to the Mathematical Theory of Finite Elements, Courier Dover Publications, New York, 2012.
  • Z. Peng, H. Bi, H. Li, and Y. Yang, A multilevel correction method for convection-diffusion eigenvalue problems, Math. Probl. Eng. 2015 (2015), pp. 1–10.
  • A.D. Russo and A.E. Alonso, A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem, Comput. Math. Appl. 62 (2011), pp. 4100–4117. doi: 10.1016/j.camwa.2011.09.061
  • Z. Shi and M. Wang, Finite Element Methods, Scientific Publishers, Beijing, 2013.
  • W. Tang, Z. Guan, and H. Han, Boundary element approximation of Steklov eigenvalue problem for Helmhooltz equation, J. Comput. Math. 16 (1998), pp. 165–178.
  • H. Xie, A multigrid method for eigenvalue problem, J. Comput. Phys. 274 (2014), pp. 550–561. doi: 10.1016/j.jcp.2014.06.030
  • H. Xie, A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal. 34(2) (2014), pp. 592–608. doi: 10.1093/imanum/drt009
  • H. Xie and Z. Zhang, A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. Available at arXiv:1505.06288v2 [math.NA] 24 Sep. 2016.
  • J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput. 70 (2001), pp. 581–613.
  • Y. Yang, H. Bi, J. Han, and Y. Yu, The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput. 37 (2015), pp. A2583–A2606. doi: 10.1137/140992011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.