198
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient

, , &
Pages 1621-1635 | Received 26 Jul 2018, Accepted 13 Jun 2019, Published online: 14 Jul 2019

References

  • H. Chen, S. Lü, and W. Chen, A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, J. Comput. Appl. Math. 330 (2018), pp. 380–397. doi: 10.1016/j.cam.2017.09.011
  • M. Cui, Combined compact difference scheme for the time fractional convection diffusion equation with variable coefficients, Appl. Math. Comput. 246 (2014), pp. 464–473.
  • M. Cui, Compact exponential scheme for the time fractional convection diffusion reaction equation with variable coefficients, J. Comput. Phys. 280 (2015), pp. 143–163. doi: 10.1016/j.jcp.2014.09.012
  • M. Dehghan, M. Safarpoor, and M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math. 290 (2015), pp. 174–195. doi: 10.1016/j.cam.2015.04.037
  • S. Esmaeilia and R. Garrappab, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math. 92 (2015), pp. 980–994. doi: 10.1080/00207160.2014.915962
  • W. Fan, X. Jiang, F. Liu, and V. Anh, The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain, J. Sci. Comput. 77 (2018), pp. 27–52. doi: 10.1007/s10915-018-0694-x
  • L. Feng, F. Liu, I. Turner, and L. Zheng, Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady and MHD and Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal. 21 (2018), pp. 867–868. doi: 10.1515/fca-2018-0058
  • Y. Gu, P. Zhuang, and Q. Liu, An advanced meshless method for time fractional diffusion equation, Int. J. Comput. Meth. 8 (2011), pp. 653–665. doi: 10.1142/S0219876211002745
  • C. Huang, X. Yu, C. Wang, Z. Li, and N. And, A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation, Appl. Math. Comput. 264 (2015), pp. 483–492.
  • H. Jiang, F. Liu, I. Turner, and K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl. 64 (2012), pp. 3377–3388. doi: 10.1016/j.camwa.2012.02.042
  • Y. Ke, B.M. Cohen, S. Lowen, F. Hirashima, L. Nassar, and P.F. Renshaw, Biexponential transverse relaxation (T2) of the proton MRS creatine resonance in human brain, Magnet. Reson. Med. 47 (2002), pp. 232–238. doi: 10.1002/mrm.10063
  • Y. Li and C. Xu, Finite difference/spectral approxiamtions for the time- fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2006.12.023
  • Z. Li, Y. Liu, and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257 (2015), pp. 381–397.
  • D. Li, H. Liao, W. Sun, J. Wang, and J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys. 24 (2018), pp. 86–103.
  • H. Liao, D. Li, and J. Zhang, Sharp error estimate of nonuniform L1 formular for time fractional reaction-subdiffusion equations, SIAM J. Numer. Anal. 56 (2018), pp. 1112–1133. doi: 10.1137/17M1131829
  • Q. Lin and J. Lin, Finte Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.
  • Q. Lin and N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Press, Baoding, 1996.
  • Q. Lin, L. Tobiska, and A. Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Possion equation, IMA J. Numer. Anal. 25 (2005), pp. 160–181. doi: 10.1093/imanum/drh008
  • Q. Liu, Y.T. Gu, P. Zhuang, F. Liu, and Y.F. Nie, An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech. 48 (2011), pp. 1–12. doi: 10.1007/s00466-011-0573-x
  • F. Liu, P. Zhuang, and Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications, Science Press, China, (in Chinese), 2015. ISBN 978-7-03-046335-7.
  • Z. Liu, F. Liu, and F. Zeng, An alternating direction implicit spectral method for solving two dimensional multiterm time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math. Available at https://doi.org/10.1016/j.apnum.2018.10.005.
  • Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), pp. 538–548. doi: 10.1016/j.jmaa.2010.08.048
  • R.L. Magin, O. Abdullah, D. Baleanu, and X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson. 190 (2008), pp. 255–270. doi: 10.1016/j.jmr.2007.11.007
  • F. Mainardi, Fractional diffusive waves in viscoelastic solids, in Nonlinear Waves in Solids, J. L. Wegner and F. R. Norwood, eds., ASME, Fairfield, NJ, 1995, pp. 93–97.
  • R. Metzler and R. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), pp. 107–125. doi: 10.1016/S0378-4371(99)00503-8
  • C. Ming, F. Liu, L. Zheng, I. Turner, and V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid, Comput. Math. Appl. 72 (2016), pp. 2084–2097. doi: 10.1016/j.camwa.2016.08.012
  • K. Mustapha, B. Abdallah, K.M. Furati, and M. Nour, A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients, Numer. Algor. 73 (2016), pp. 517–534. doi: 10.1007/s11075-016-0106-y
  • S. Qin, F. Liu, and I. Turner, A two-dimensional multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements, Commun. Nonlinear Sci. Numer. Simul. 56 (2018), pp. 270–286. doi: 10.1016/j.cnsns.2017.08.014
  • H. Scher and E. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12 (1975), pp. 2455–2477. doi: 10.1103/PhysRevB.12.2455
  • H. Schiessel, R. Metzler, A. Blumen, and T.F. Nonnenmacher, Generalized viscoelastic models: Their fractional equations with solutions, J. Phys. A Math. Gen. 28 (1995), pp. 65–67. doi: 10.1088/0305-4470/28/23/012
  • W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), pp. 134–144. doi: 10.1063/1.528578
  • S. Shen, F. Liu, and V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math. (2018). Available at https://doi.org/10.1016/j.cam.2018.05.020.
  • S.J. Shen, F. Liu, and V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math. 345 (2019), pp. 515–534. doi: 10.1016/j.cam.2018.05.020
  • D. Shi and Y. Shi, The lowest order H1-Galerkin mixed finite element method for semi-linear Pseudo-Hyperbolic equation, J. Sys. Sci. Math. Scis. 35 (2015), pp. 514–526.
  • D. Shi and J. Wang, Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations, Comput. Math. Appl. 72 (2016), pp. 1590–1602. doi: 10.1016/j.camwa.2016.07.023
  • D. Shi and J. Wang, Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation, Appl. Math. Comput. 294 (2017), pp. 216–226.
  • D. Shi and H. Yang, A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes, Appl. Math. Lett. 58 (2016), pp. 74–80. doi: 10.1016/j.aml.2016.02.007
  • D. Shi, F. Wang, and Y. Zhao, Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations, Acta Math. Appl. Sin. 29 (2013), pp. 403–414. doi: 10.1007/s10255-013-0216-4
  • D. Shi, Y. Zhao, and F. Wang, Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations, Appl. Math. Comput. 243 (2014), pp. 454–464.
  • D. Shi, P. Wang, and Y. Zhao, Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schröinger equation, Appl. Math. Lett. 38 (2014), pp. 129–134. doi: 10.1016/j.aml.2014.07.019
  • D. Shi, F. Yan, and J. Wang, Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation, Appl. Math. Comput. 274 (2016), pp. 182–194.
  • Y. Shi, F. Wang, and Y. Zhao, A new low order mixed fem for nonlinear Benjamin-Bona-Mahony equation, Math. Appl. (Wuhan) 31 (2018), pp. 638–652.
  • Z. Shi, Y. Zhao, F. Liu, F. Wang, and Y. Tang, Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes, Appl. Math. Comput. 338 (2018), pp. 290–304.
  • Z. Soori and A. Aminataei, Sixth-order non-uniform combined compact difference scheme for multi-term time fractional diffusion-wave equation, Appl. Numer. Math. 131 (2018), pp. 72–94. doi: 10.1016/j.apnum.2018.04.006
  • M. Uddin and K.A. Ali, A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem. 92 (2018), pp. 108–113. doi: 10.1016/j.enganabound.2017.10.021
  • S. Vong, P. Lyu, and Z. Wang, A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under neumann boundary conditions, J. Sci. Comput. DOI:10.1007/s10915-015-0040-5.
  • J. Wang, A new error analysis of Crank-Nicolson Galerkin FEMS for a gneralized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014), pp. 390–407. doi: 10.1007/s10915-013-9799-4
  • F.L. Wang, F. Liu, Y.M. Zhao, Y.H. Shi, and Z.G. Shi, A novel approach of high accuracy analysis of anisotropic bilinear finite element for time-fractional diffusion equations with variable coefficient, Comput. Math. Appl. 75 (2018), pp. 3786–3800. doi: 10.1016/j.camwa.2018.02.030
  • L. Wei, Y. He, X. Zhang, and S. Wang, Analysis of an implicit fully discrete local discontinuous Glerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des. 59 (2012), pp. 28–34. doi: 10.1016/j.finel.2012.03.008
  • C. Yao, J. Li, and D. Shi, Superconvergence analysis of nonconforming mixed finite element methods for time-dependent Maxwells equations in isotropic cold plasma media, Appl. Math. Comput. 219 (2013), pp. 6466–6472.
  • F. Zeng, Z. Zhang, and G. Karniadak, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Engrg. 327 (2017), pp. 478–502. doi: 10.1016/j.cma.2017.08.029
  • Y. Zhang, Z. Sun, and H. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014), pp. 195–210. doi: 10.1016/j.jcp.2014.02.008
  • Y. Zhao, Y. Zhang, D. Shi, F. Liu, and I. Turner, Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl. Math. Lett. 59 (2016), pp. 38–47. doi: 10.1016/j.aml.2016.03.005
  • Y. Zhao, Y. Zhang, F. Liu, I. Turner, Y. Tang, and V. Anh, Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl. 73 (2017), pp. 1087–1099. doi: 10.1016/j.camwa.2016.05.005
  • Y. Zhao, P. Chen, W. Bu, X. Liu, and Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput. 70 (2017), pp. 407–428. doi: 10.1007/s10915-015-0152-y
  • P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Alogrithms Comput. Technol. 1 (2007), pp. 1–15. doi: 10.1260/174830107780122667
  • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. Numer. Anal. 46(2) (2008), pp. 1079–1095. doi: 10.1137/060673114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.