342
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

General Basset–Boussinesq–Oseen equation: existence, uniqueness, approximation and regularity of solutions

, &
Pages 1792-1805 | Received 05 Apr 2019, Accepted 18 Aug 2019, Published online: 30 Aug 2019

References

  • S. Abbas, M. Benchohra, and G.M. NǴuérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York, 2012.
  • S. Abbas, M. Benchohra, and G.M. NǴuérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2014.
  • F. Bahrami, H. Fazli, and A. Jodayree Akbarfam, A new approach on fractional variational problems and Euler-Lagrange equations, Commun. Nonlinear Sci. Numer. Simul. 23 (2015), pp. 39–50. doi: 10.1016/j.cnsns.2014.10.025
  • A.B. Basset, A Treatise on Hydrodynamics, Vol. 2, Cambridge University Press, England, 1888.
  • T.G. Bhaskar, and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), pp. 1379–1393. doi: 10.1016/j.na.2005.10.017
  • B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput. 187 (2007), pp. 79–88.
  • J. Boussinesq, Sur la résistance quóppose un liquid indéfini en repos, san pesanteur, au mouvement varié dúne sphére solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C.R. Acad. Paris 100 (1885), pp. 935–937.
  • H. Brunner, and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl. 18 (1989), pp. 449–457. doi: 10.1016/0898-1221(89)90239-3
  • H. Chen, X. Hu, J. Ren, T. Sun, and Y. Tang, L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity, Int. J. Mod. Sim. Sci. Comp. 10(1) (2019), pp. 1941006.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
  • H. Gong, J. Zhang, H. Guo, A superlinear convergence scheme for nonlinear fractional differential equations and its fast implement. Int. J. Mod. Sim. Sci. Comp. 10(1) (2019), pp. 1941001.
  • H. Fazli and F. Bahrami, On the steady solutions of fractional reaction-diffusion equations, Filomat.31 (2017), pp. 1655–1664. doi: 10.2298/FIL1706655F
  • H. Fazli and J.J. Nieto, Nonlinear sequential fractional differential equations in partially ordered spaces, Filomat. 32 (2018), pp. 4577–4586. doi: 10.2298/FIL1813577F
  • H. Fazli and J.J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals.114 (2018), pp. 332–337. doi: 10.1016/j.chaos.2018.07.009
  • H. Fazli and J.J. Nieto, An investigation of fractional Bagley-Torvik equation, Open Math. 17 (2019), pp. 499–512. doi: 10.1515/math-2019-0040
  • H. Fazli, J.J. Nieto, and F. Bahrami, On the existence and uniqueness results for nonlinear sequential fractional differential equations, Appl. Comput. Math. 17 (2018), pp. 36–47.
  • E. Hairer and P. Maass, Numerical methods for singular nonlinear integro-differential equations, Appl. Num. Math. 3 (1987), pp. 243–256. doi: 10.1016/0168-9274(87)90051-1
  • G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), pp. 565–606. doi: 10.1007/BF01171116
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204: North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.
  • M. Li and C. Huang, ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusionwave equation, Int. J. Mod. Sim. Sci. Comp. 8(3) (2017), pp. 1750025.
  • M. Li and C. Huang, An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian, Numer. Methods Partial Differential Equ. 35(1) (2019), pp. 394–421. doi: 10.1002/num.22305
  • M. Li, C. Huang, and W. Ming, A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations, Numer. Algorithms. 2019. doi:10.1007/s11075-019-00672-3
  • M. Li, C. Huang, and P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms. 74(2) (2017), pp. 499–525. doi: 10.1007/s11075-016-0160-5
  • M. Li and Y.L. Zhao, A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl. Math. Comput. 338(1) (2018), pp. 758–773.
  • M.R. Maxey and J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids. 26 (1983), pp. 883–889. doi: 10.1063/1.864230
  • S. McKee and A. Stokes, Product integration methods for the nonlinear Basset equation., SIAM J. Numer. Anal. 20 (1983), pp. 143–160. doi: 10.1137/0720010
  • B.P. Moghaddam, J.A.T. Machado, and H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals. 102 (2017), pp. 354–360. doi: 10.1016/j.chaos.2017.03.065
  • J.J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (2005), pp. 223–239. doi: 10.1007/s11083-005-9018-5
  • J.J. Nieto and R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc. 135 (2007), pp. 2505–2517. doi: 10.1090/S0002-9939-07-08729-1
  • C.W. Oseen, Neuere Methoden Und Ergebnisse in Der Hydrodynamik, Akademische Verlagsgesellschaft m. b. h., Leipzig, 1927.
  • M. Parmar, A. Haselbacher, and S. Balachandar, Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow, Phys. Rev. Lett. 106(8) (2011), pp. 084501. doi: 10.1103/PhysRevLett.106.084501
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett. 22 (2009), pp. 64–69. doi: 10.1016/j.aml.2008.03.001
  • V.E. Tarasov, Generalized memory: fractional calculus approach, Fractal Fract. 2 (2018), pp. 1–17. doi: 10.3390/fractalfract2040023
  • Y. Zhou, J.R. Wang, and L. Zhang, Basic Theory of Fractional Differential Equations, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.