229
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A fast high-order compact difference method for the fractal mobile/immobile transport equation

, &
Pages 1860-1883 | Received 16 Oct 2017, Accepted 12 Jul 2019, Published online: 20 Sep 2019

References

  • A. Ashyralyev and Z. Cakir, Fdm for fractional parabolic equations with the neumann condition, Adv. Differ. Equ. 2013 (2013), pp. 1–16. doi: 10.1186/1687-1847-2013-1
  • A. Atangana and D. Baleanu, Numerical solution of a kind of fractional parabolic equations via two difference schemes, in Abstract and Applied Analysis, Vol. 2013, Hindawi Publishing Corporation, 2013. Article id 828764.
  • S. Chen, F. Liu, X. Jiang, I. Turner, and V. Anh, A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput. 257 (2015), pp. 591–601.
  • A. Cheng, H. Wang, and K. Wang, A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion, Numer. Methods Partial Differ. Equ. 31 (2015), pp. 253–267. doi: 10.1002/num.21901
  • M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 (2009), pp. 7792–7804. doi: 10.1016/j.jcp.2009.07.021
  • G.-H. Gao and Z.-Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), pp. 586–595. doi: 10.1016/j.jcp.2010.10.007
  • X. Hu and L. Zhang, Implicit compact difference schemes for the fractional cable equation, Appl. Math. Model. 36 (2012), pp. 4027–4043. doi: 10.1016/j.apm.2011.11.027
  • J. Huang, Y. Tang, L. Vázquez, and J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64 (2013), pp. 707–720. doi: 10.1007/s11075-012-9689-0
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations, arXiv preprint (2015). Available at arXiv:1511.03453.
  • Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235 (2011), pp. 3285–3290. doi: 10.1016/j.cam.2011.01.011
  • I. Karatay, N. Kale, and S.R. Bayramoglu, A new difference scheme for time fractional heat equations based on the crank-nicholson method, Fract. Calc. Appl. Anal. 16 (2013), pp. 892–910. doi: 10.2478/s13540-013-0055-2
  • R. Ke, M.K. Ng, and H.-W. Sun, A fast direct method for block triangular toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations, J. Comput. Phys. 303 (2015), pp. 203–211. doi: 10.1016/j.jcp.2015.09.042
  • W. Li and X. Da, Finite central difference/finite element approximations for parabolic integro-differential equations, Computing 90 (2010), pp. 89–111. doi: 10.1007/s00607-010-0105-0
  • C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Vol. 24, CRC Press, Boca Raton, 2015.
  • S. Li and Z. Zhou, Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation, Appl. Math. Comput. 350 (2019), pp. 331–347.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput. 80 (2011), pp. 1369–1396. doi: 10.1090/S0025-5718-2010-02438-X
  • Z. Liu and X. Li, A parallel cgs block-centered finite difference method for a nonlinear time-fractional parabolic equation, Comput. Methods Appl. Mech. Eng. 308 (2016), pp. 330–348. doi: 10.1016/j.cma.2016.05.028
  • Z. Liu and X. Li, A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation, J. Appl. Math. Comput. 56 (2018), pp. 391–410. doi: 10.1007/s12190-016-1079-7
  • F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection–dispersion models, Comput. Math. Appl. 64 (2012), pp. 2990–3007. doi: 10.1016/j.camwa.2012.01.020
  • Y. Liu, Z. Fang, H. Li, and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput. 243 (2014), pp. 703–717.
  • F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), pp. 3871–3878. doi: 10.1016/j.apm.2013.10.007
  • Q. Liu, F. Liu, I. Turner, V. Anh, and Y. Gu, A rbf meshless approach for modeling a fractal mobile/immobile transport model, Appl. Math. Comput. 226 (2014), pp. 336–347.
  • Y. Liu, Y. Du, H. Li, and J. Wang, An h^ 1-Galerkin mixed finite element method for time fractional reaction–diffusion equation, J. Appl. Math. Comput. 47 (2015), pp. 103–117. doi: 10.1007/s12190-014-0764-7
  • A. Mohebbi and M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation, Numer. Algorithms 63 (2013), pp. 431–452. doi: 10.1007/s11075-012-9631-5
  • Y. Saad and M.H. Schultz, Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), pp. 856–869. doi: 10.1137/0907058
  • R. Schumer, D.A. Benson, M.M. Meerschaert, Fractal mobile/immobile solute transport. Water Resour. Res. 39 (2003). doi:10.1029/2003WR002141.
  • E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009), pp. 4038–4054. doi: 10.1016/j.jcp.2009.02.011
  • H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput. 34 (2012), pp. A2444–A2458. doi: 10.1137/12086491X
  • K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection–diffusion equations, Adv. Water Resour. 34 (2011), pp. 810–816. doi: 10.1016/j.advwatres.2010.11.003
  • H Fu, H Wang, A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20 (2017), pp. 88–116. doi: 10.1515/fca-2017-0005
  • J. Xiao-qing, Preconditioning Techniques for Teoplitz Systems, Higher Education Press, Beijing, 2010.
  • F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), pp. A2976–A3000. doi: 10.1137/130910865
  • N. Zhang, W. Deng, and Y. Wu, Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech. 4 (2012), pp. 496–518. doi: 10.4208/aamm.10-m1210
  • H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model, Comput. Math. Appl. 66 (2013), pp. 693–701. doi: 10.1016/j.camwa.2013.01.031
  • L. Zhang and Z. Zhou, Spectral galerkin approximation of optimal control problem governed by riesz fractional differential equation, Appl. Numer. Math. 143 (2019), pp. 247–262. doi: 10.1016/j.apnum.2019.04.003
  • Y. Zhao, P. Chen, W. Bu, Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 1 (2015), pp. 1–22.
  • Z. Zhou and W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl. 71 (2016), pp. 301–318. doi: 10.1016/j.camwa.2015.11.014
  • Z. Zhou and Z. Tan, Finite element approximation of optimal control problem governed by space fractional equation, J. Sci. Comput. 78 (2019), pp. 1840–1861. doi: 10.1007/s10915-018-0829-0
  • Z. Zhou and C. Zhang, Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation, Numer. Algorithms 79 (2018), pp. 437–455. doi: 10.1007/s11075-017-0445-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.