76
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Convergence and quasi-optimality of an adaptive continuous interior multi-penalty finite element method

&
Pages 1884-1907 | Received 13 Sep 2018, Accepted 03 Sep 2019, Published online: 27 Sep 2019

References

  • M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2005), pp. 553–575. doi: 10.1137/S0036142903423460
  • M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000.
  • M. Ainsworth and R. Rankin, Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes, SIAM J. Numer. Anal. 47 (2010), pp. 4112–4141. doi: 10.1137/080725945
  • D. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), pp. 742–760. doi: 10.1137/0719052
  • I. Babuška and C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), pp. 736–754. doi: 10.1137/0715049
  • I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev. 42 (2000), pp. 451–484.
  • I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), pp. 75–102. doi: 10.1007/BF01389757
  • E. Bänsch, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Eng. 3 (1991), pp. 181–191. doi: 10.1016/0899-8248(91)90006-G
  • P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), pp. 219–268. doi: 10.1007/s00211-003-0492-7
  • A. Bonito and R.H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal. 48 (2010), pp. 734–771. doi: 10.1137/08072838X
  • S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. 3rd ed. Springer-Verlag, New York, 2008.
  • S. Brenner and L. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22 (2005), pp. 83–118. doi: 10.1007/s10915-004-4135-7
  • E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), pp. 2012–2033. doi: 10.1137/S0036142903437374
  • E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Math. Comput. 74 (2005), pp. 1637–1652. doi: 10.1090/S0025-5718-05-01761-8
  • E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comput. 76(259) (2007), pp. 1119–1140. doi: 10.1090/S0025-5718-07-01951-5
  • E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Meth. Appl. Mech. Eng.193 (2004), pp. 1437–1453. doi: 10.1016/j.cma.2003.12.032
  • E. Burman, M. Fernández, and P. Hansbo, Continuous interior penalty finite element method for Oseen's equations, SIAM J. Numer. Anal. 44 (2006), pp. 1248–1274. doi: 10.1137/040617686
  • E. Burman, H. Wu, and L. Zhu, Linear continuous interior penalty finite element method for Helmholtz equation with high wave number: One dimensional analysis, Numer. Methods Partial Differ. Equ. 32 (2016), pp. 1378–1410. doi: 10.1002/num.22054
  • C. Carstensen and R.H. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math. 103 (2006), pp. 251–266. doi: 10.1007/s00211-005-0658-6
  • C. Carstensen, J. Hu, and A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal. 45 (2007), pp. 68–82. doi: 10.1137/050628854
  • J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), pp. 2524–2550. doi: 10.1137/07069047X
  • Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comput. 73 (2004), pp. 1167–1193. doi: 10.1090/S0025-5718-04-01634-5
  • L. Chen, M. Holst, and J. Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comput. 78 (2009), pp. 35–53. doi: 10.1090/S0025-5718-08-02155-8
  • P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  • P. Clément, Approximation by finite element functions using local regularization, RARIO Numer. Anal. 2 (1975), pp. 77–84.
  • R.A. DeVore, Nonlinear approximation, Acta Numer. 7 (1998), pp. 51–150. doi: 10.1017/S0962492900002816
  • Y. Di, R. Li, T. Tang, and P. Zhang, Moving mesh finite element methods for the incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 26 (2005), pp. 1036–1056. doi: 10.1137/030600643
  • W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33 (1996), pp. 1106–1124. doi: 10.1137/0733054
  • J. Douglas Jr. and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Lecture Notes in Phys. 58, Springer-Verlag, Berlin, 1976.
  • Y. Du and H. Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal. 53 (2015), pp. 782–804. doi: 10.1137/140953125
  • Y. Du and L. Zhu, Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the helmholtz equation with highwave number, J. Sci. Comput. 67 (2016), pp. 130–152. doi: 10.1007/s10915-015-0074-8
  • X. Feng and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers, SIAM J. Numer. Anal. 47 (2009), pp. 2872–2896. doi: 10.1137/080737538
  • X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput. 80 (2011), pp. 1997–2024. doi: 10.1090/S0025-5718-2011-02475-0
  • R.H. Hoppe, G. Kanschat, and T. Warburton, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM J. Numer. Anal. 47 (2008), pp. 534–550. doi: 10.1137/070704599
  • O.A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal. 45 (2007), pp. 641–665. doi: 10.1137/05063979X
  • J.M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comput. 79 (2010), pp. 1871–1914. doi: 10.1090/S0025-5718-10-02362-8
  • P. Morin, R.H. Nochetto, and K.G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), pp. 466–488. doi: 10.1137/S0036142999360044
  • P. Morin, R.H. Nochetto, and K.G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), pp. 631–658. doi: 10.1137/S0036144502409093
  • P. Morin, K.G. Siebert, and A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), pp. 707–737. doi: 10.1142/S0218202508002838
  • C. Schwab, p- and hp-Finite Element Methods, Oxford University Press, New York, 1998.
  • L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput. 54 (1990), pp. 483–493. doi: 10.1090/S0025-5718-1990-1011446-7
  • R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), pp. 245–269. doi: 10.1007/s10208-005-0183-0
  • R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comput. 77 (2008), pp. 227–241. doi: 10.1090/S0025-5718-07-01959-X
  • R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner-Wiley, Stuttgart, 1996.
  • H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: Linear version, IMA J. Numer. Anal. 34 (2014), pp. 1266–1288. doi: 10.1093/imanum/drt033
  • H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal. 45 (2007), pp. 1701–1722. doi: 10.1137/060661430
  • L. Zhu and Y. Du, Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number, Comput. Math. Appl. 70 (2015), pp. 917–933. doi: 10.1016/j.camwa.2015.06.007
  • L. Zhu and H. Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal. 51 (2013), pp. 1828–1852. doi: 10.1137/120874643

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.