405
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equation

ORCID Icon & ORCID Icon
Pages 1928-1948 | Received 18 Jul 2018, Accepted 04 Sep 2019, Published online: 30 Sep 2019

References

  • S. Arshad, W. Bu, J. Huang, Y. Tang, and Y. Zhao, Finite difference method for time-space linear and nonlinear fractional diffusion equations, Int. J. Comput. Math. 95 (2018), pp. 202–217. doi: 10.1080/00207160.2017.1344231
  • W. Bu, Y. Tang, Y. Wu, and J. Yang, Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model, Appl. Math. Comput. 257 (2015), pp. 355–364.
  • A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction–diffusion equations, BIT. Numer. Math. 54 (2014), pp. 937–954. doi: 10.1007/s10543-014-0484-2
  • K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction–diffusion equations, SIAM J. Sci. Comput. 34 (2012), pp. 2145–2172. doi: 10.1137/110847007
  • X. Cao, X. Cao, and L. Wen, The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term, J. Comput. Appl. Math. 318 (2017), pp. 199–210. doi: 10.1016/j.cam.2016.10.014
  • C. Çelik and M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231 (2012), pp. 1743–1750. doi: 10.1016/j.jcp.2011.11.008
  • H. Chen, S. Gan, D. Xu, and Q. Liu, A second-order BDF compact difference scheme for fractional-order Volterra equation, Int. J. Comput. Math. 93 (2015), pp. 1140–1154. doi: 10.1080/00207160.2015.1021695
  • S. Chen, F. Liu, X. Jiang, I. Turner, and V. Anh, A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput.257 (2015), pp. 591–601.
  • Y. Choi and S. Chung, Finite element solutions for the space-fractional diffusion equation with a nonlinear source term, Abstr. Appl. Anal. 2012 (2012), pp. 183–201.
  • H. Choi, S. Chung, and Y. Lee, Numerical solutions for space-fractional dispersion equations with nonlinear source terms, Bull. Korean Math. Soc. 47 (2010), pp. 1225–1234. doi: 10.4134/BKMS.2010.47.6.1225
  • H. Ding and C. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput. 71 (2017), pp. 759–784. doi: 10.1007/s10915-016-0317-3
  • L. Feng, P. Zhuang, F. Liu, I. Turner, and J. Li, High-order numerical methods for the Riesz space fractional advection–dispersion equations, Comput. Math. Appl. (2016). doi:10.1016/j.camwa.2016.01.015. Available online 19 February 2016.
  • K. Furati, M. Yousuf, and A. Khaliq, Fourth-order methods for space fractional reaction–diffusion equations with non-smooth data, Int. J. Comput. Math. 95 (2018), pp. 1240–1256. doi: 10.1080/00207160.2017.1404037
  • Z. Hao, Z. Sun, and W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys. 281 (2015), pp. 787–805. doi: 10.1016/j.jcp.2014.10.053
  • W. Hundsdorfe, Partially implicit BDF2 blends for convection dominated flows, SIAM J. Numer. Anal. 38 (2001), pp. 1763–1783. doi: 10.1137/S0036142999364741
  • O. Iyiola, E. Asante-Asamani, K. Furati, A. Khaliq, and B. Wade, Efficient time discretization scheme for nonlinear space fractional reaction–diffusion equations, Int. J. Comput. Math. 95 (2018), pp. 1274–1291. doi: 10.1080/00207160.2017.1404995
  • A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • C. Li and A. Chen, Numerical methods for fractional partial differential equations, Int. J. Comput. Math. 95 (2018), pp. 1048–1099. doi: 10.1080/00207160.2017.1343941
  • Y. Li and D. Wang, Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term, Int. J. Comput. Math. 94 (2017), pp. 821–840. doi: 10.1080/00207160.2016.1148814
  • C. Li, Y. Wu, and R. Ye, Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis: Fractional Dynamics, Network Dynamics, Classical Dynamics and Fractal Dynamics with their Numerical Simulations, World Scientific, Singapore, 2013.
  • C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015.
  • H. Liao, P. Lyu, and S. Vong, Second-order BDF time approximation for Riesz space-fractional diffusion equations, Int. J. Comput. Math. 95 (2017), pp. 144–158. doi: 10.1080/00207160.2017.1366461
  • F. Lin and H. Qu, A Runge–Kutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives, Int. J. Comput. Math. 96 (2019), pp. 417–435. doi: 10.1080/00207160.2018.1487059
  • F. Liu, S. Chen, I. Turner, K. Burrage, and V. Anh, Numerical simulation for two-dimensional riesz space fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys. 11 (2013), pp. 1221–1232.
  • F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys. 293 (2015), pp. 252–263. doi: 10.1016/j.jcp.2014.06.001
  • M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection—dispersion equations, J. Comput. Appl. Math. 172 (2004), pp. 65–77. doi: 10.1016/j.cam.2004.01.033
  • M. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci. 2006 (2006), pp. 1–12. (Article ID 48391). doi: 10.1155/IJMMS/2006/48391
  • W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • P. Wang and C. Huang, An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation, J. Comput. Phys. 312 (2016), pp. 31–49. doi: 10.1016/j.jcp.2016.02.018
  • D. Wang, A. Xiao, and W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242 (2013), pp. 670–681. doi: 10.1016/j.jcp.2013.02.037
  • M. Yousuf, A second-order efficient L-stable numerical method for space fractional reaction–diffusion equations, Int. J. Comput. Math. 95 (2018), pp. 1408–1422. doi: 10.1080/00207160.2018.1435865
  • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, SIAM J. Numer. Anal. 52 (2014), pp. 2599–2622. doi: 10.1137/130934192
  • Y. Zhang and H. Ding, High-order algorithm for the two-dimension Riesz space-fractional diffusion equation, Int. J. Comput. Math. 94 (2017), pp. 2063–2073. doi: 10.1080/00207160.2016.1274746
  • X. Zhao, Z. Sun, and Z. Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36 (2014), pp. 2865–2886. doi: 10.1137/140961560
  • H. Zhou, W. Tian, and W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput. 56 (2013), pp. 45–66. doi: 10.1007/s10915-012-9661-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.