310
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels

, & ORCID Icon
Pages 2055-2073 | Received 29 Nov 2018, Accepted 30 Sep 2019, Published online: 15 Oct 2019

References

  • M. Al-Refai and Y. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput. 257 (2015), pp. 40–51.
  • W. Bu and A. Xiao, An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functions, Numer. Algorithms (2018). Available at https://doi.org/10.1007/s11075-018-0559-2.
  • W. Bu, X. Liu, Y. Tang, and J. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput. 6 (2015), p. 1540001. doi: 10.1142/S1793962315400012
  • W. Bu, S. Shu, X. Yue, A. Xiao, and W. Zeng, Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain, Comput. Math. Appl. (2018). Available at https://doi.org/10.1016/j.camwa.2018.11.033.
  • H. Chen, S. Gan, D. Xu, and Q. Liu, A second order BDF compact difference scheme for fractional order Volterra equations, Int. J. Comput. Math. 93 (2016), pp. 1140–1154. doi: 10.1080/00207160.2015.1021695
  • H. Chen, D. Xu, J. Cao, and J. Zhou, A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation, Int. J. Comput. Math. (2019). Available at https://doi.org/10.1080/00207160.2019.1607843.
  • M. Dehghan, M. Safarpoor, and M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math. 290 (2015), pp. 174–195. doi: 10.1016/j.cam.2015.04.037
  • L. Guo, Z. Wang, and S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math. 93 (2015), pp. 1665–1682. doi: 10.1080/00207160.2015.1070840
  • K.B. Hannsgen and R.L. Wheeler, Uniform L1 behavior in classes of integrodifferential equations with completely monotonic kernels, SIAM J. Math. Anal. 15 (1984), pp. 579–594. doi: 10.1137/0515044
  • X. Hu and L. Zhang, A compact finite difference scheme for the fourth-order fractional diffusion-wave system, Comput. Phys. Commun. 182 (2011), pp. 1645–1650. doi: 10.1016/j.cpc.2011.04.013
  • X. Hu and L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and sub-diffusion systems, Appl. Math. Comput. 218 (2012), pp. 5019–5034.
  • X. Hu and L. Zhang, A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system, Int. J. Comput. Math. 91 (2014), pp. 2215–2231. doi: 10.1080/00207160.2013.871000
  • S. Hu, W. Qiu, and H. Chen, A backward Euler difference scheme for the integro-differential equations with the multi-term kernels, Int. J. Comput. Math. (2019). Available at https://doi.org/10.1080/00207160.2019.1613529.
  • B. Jin, R. Lazarov, Y. Liu, and Z. Zhou, The Galerkin finite element method for multi-term time-fractional diffusion equations, J. Comput. Phys. 281 (2015), pp. 825–843. doi: 10.1016/j.jcp.2014.10.051
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equations, Fract. Calc. Appl. Anal. 16 (2013), pp. 9–25. doi: 10.2478/s13540-013-0002-2
  • Y. Liu, Z. Fang, H. Li, and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput. 243 (2014), pp. 703–717.
  • Y. Liu, Y. Du, H. Li, and J. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear. Dyn. 85 (2016), pp. 2535–2548. doi: 10.1007/s11071-016-2843-9
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), pp. 704–719. doi: 10.1137/0517050
  • C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), pp. 129–145. doi: 10.1007/BF01398686
  • C. Lubich, I.H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equatiom with a positive-type memory term, Math. Comput. 65 (1996), pp. 1–17. doi: 10.1090/S0025-5718-96-00677-1
  • Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), pp. 538–548. doi: 10.1016/j.jmaa.2010.08.048
  • J.C. Lopez-Marcos, A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27 (1990), pp. 20–31. doi: 10.1137/0727002
  • R. Noren, Uniform L1 behavior for the solution of a Volterra equation with a parameter, SIAM. J. Math. Anal. 19 (1988), pp. 270–286. doi: 10.1137/0519020
  • R. Noren, Uniform L1 behavior in classes of integro-differential equations with convex kernels, J. Integral Equ. Appl. 1 (1988), pp. 385–396. doi: 10.1216/JIE-1988-1-3-385
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • W. Qiu, H. Chen, and X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul. 166 (2019), pp. 298–314. doi: 10.1016/j.matcom.2019.05.017
  • M. Renardy, W.J. Hrusa, and J.A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 35, Longman Scientific and Technical, Essex, 1987. John Wiley and Sons, New York.
  • H. Tariq and G. Akram, Quintic spline technique for time fractional fourth-order partial differential equation, Numer. Methods Partial Differ. Equ. 33 (2017), pp. 445–466. doi: 10.1002/num.22088
  • S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech. 6 (2014), pp. 419–435. doi: 10.4208/aamm.2014.4.s1
  • D. Xu, The global behavior of time discretization for an abstract Volterra equation in Hilbert space, Calcolo 34 (1997), pp. 71–104.
  • D. Xu, The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability, Sci. China-Math. 56 (2013), pp. 395–424. doi: 10.1007/s11425-012-4410-2
  • D. Xu, The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic convergence, Numer. Methods Partial Differ. Equ. 32 (2016), pp. 896–935. doi: 10.1002/num.22035
  • D. Xu, Numerical asymptotic stability for the integro-differential equations with the multi-term kernels, Appl. Math. Comput. 309 (2017), pp. 107–132.
  • Y. Zhang, Z. Sun, and H. Wu, Error estimates of Crank-Nicolson type difference schemes for the sub-diffusion equation, SIAM J. Numer. Anal. 49 (2011), pp. 2302–2322. doi: 10.1137/100812707
  • H. Zhang, X. Han, and X. Yang, Quintic B-spline collocation method for fourth-order partial integro-differential equation with a weakly singular kernel, Appl. Math. Comput. 219 (2013), pp. 6565–6575.
  • J. Zhou, D. Xu, and H. Chen, A weak Galerkin finite element method for multi-term time-fractional diffusion equations, East Asian J. Appl. Math. 8 (2018), pp. 181–193. doi: 10.4208/eajam.260617.151117a
  • P. Zhuang, F. Liu, I. Turner, and Y. Gu, Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl. Math. Model. 38 (2014), pp. 3860–3870. doi: 10.1016/j.apm.2013.10.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.