112
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

On modified two-step iterative method in the fractional sense: some applications in real world phenomena

, &
Pages 2109-2141 | Received 30 Dec 2018, Accepted 14 Oct 2019, Published online: 03 Nov 2019

References

  • S. Abbasbandy, P. Bakhtiari, A. Cordero, J.R. Torregrosa and T. Lotfi, New efficient methods for solving nonlinear systems of equations with arbitrary even order, Appl. Math. Comput. 21 (2016), pp. 94–103.
  • B. Campos, A. Cordero, J.R. Torregrosa and P. Vindel, Stability analysis of iterative schemes with memory, in Proceedings of the 15th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE), pp. 285–290, 2015.
  • B. Campos, A. Cordero, J.R. Torregrosa and P. Vindel, Stability of King's family of iterative methods with memory, J. Comput. Appl. Math. 318 (2017), pp. 504–514. doi: 10.1016/j.cam.2016.01.035
  • C. Chun, Iterative methods improving Newton's method by the decomposition method, Comput. Math. Appl. 50 (2005), pp. 1559–1568. doi: 10.1016/j.camwa.2005.08.022
  • A. Cordero, J.L. Hueso, E. Hueso and J.R. Torregrosa, A modified Newton-Jarratt's composition, Numer. Algor. 55 (2010), pp. 87–99. doi: 10.1007/s11075-009-9359-z
  • A. Cordero, T. Lotfi, P. Bakhtiari and J.R. Torregrosa, An efficient two-parametric family with memory for nonlinear equations, Numer. Algor. 68 (2015), pp. 323–335. doi: 10.1007/s11075-014-9846-8
  • M. Dehghan, M. Abbaszadeh and A. Mohebbi, Error estimate for the numerical solution of fractional reaction- sub-diffusion process based on a meshless method, J. Comput. Appl. Math. 280 (2015), pp. 14–36. doi: 10.1016/j.cam.2014.11.020
  • M. Dehghan, M. Safarpoor and M. Abbaszadeh, Two high-order numerical algorithms for solving the multiterm time fractional diffusionwave equations, J. Comput. Appl. Math. 290 (2015), pp. 174–195. doi: 10.1016/j.cam.2015.04.037
  • J. Dzunic, M.S. Petkovic and L.D. Petkovic, Three-point methods with and without memory for solving nonlinear equation, Appl. Math. Comput. 218 (2012), pp. 4917–4927.
  • H. Esmaeili and M. Ahmadi, An efficient three-step method to solve system of nonlinear equations, Appl. Math. Comput. 266 (2015), pp. 1093–1101.
  • H. Esmaeili, M. Ahmadi and R. Erfanifar, An optimal sixteenth order convergent method to solve nonlinear equations, Lecturas Math. 36(2) (2015), pp. 167–177.
  • M. Grau and M. Noguera, A variant of Cauchy's method with accelerated fifth-order convergence, Appl. Math. Lett. 17 (2004), pp. 509–517. doi: 10.1016/S0893-9659(04)90119-X
  • M. Grau-Sanchez, M. Noguera, A. Grau and J.R. Herrero, On new computational local orders of convergence, Appl. Math. Lett. 25 (2012), pp. 2023–2030. doi: 10.1016/j.aml.2012.04.012
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • P. Jarratt, Some fourth order multipoint methods for solving equations, Math. Comput. 20 (1966), pp. 434–437. doi: 10.1090/S0025-5718-66-99924-8
  • A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • D. Kincaid and W. Cheney, Numerical Analysis, 2nd ed., Brooks/Cole, Pacific Grove, CA,, 1996.
  • R.F. King, A family of fourth oder methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973), pp. 876–879. doi: 10.1137/0710072
  • K. Kneisl, Julia sets for the super-Newton method, Cauchy's method, and Halley's method, Chaos 11(2) (2001), pp. 359–370. doi: 10.1063/1.1368137
  • H.T. Kung and J.F. Traub, Optimal order of one-point and multi-point iteration, J. Assoc. Comput. Math. 21 (1974), pp. 643–651. doi: 10.1145/321850.321860
  • M. Li, X.M. Gu, C. Huang and M. Fei, GuoyuZhangdA fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys. 358 (2018), pp. 256–282. doi: 10.1016/j.jcp.2017.12.044
  • M. Li and C. Huang, An efficient difference scheme for the coupled nonlinear fractional Ginzburg Landau equations with the fractional Laplacian, Numer. Methods Partial Differ. Equ. 35(1) (2019), pp. 394–421. doi: 10.1002/num.22305
  • M. Li, C. Huang and P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algor. 74(2) (2017), pp. 499–525. doi: 10.1007/s11075-016-0160-5
  • M. Li and Y.L. Zhao, A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl. Math. Comput. 338(1) (2018), pp. 758–773.
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Johan Willey and Sons, Inc, New York, 2003.
  • K. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Vol. 111, Elsevier, California, 1974.
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • J.M. Ortega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  • J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  • M.D. Ortigueira, V. Martynyuk, M. Fedula and J. Tenreiro Machado, The failure of certain fractional calculus operators in two physical models, Frac. Cal. Appl. Anal. 22(2) (2019), pp. 255–270. doi: 10.1515/fca-2019-0017
  • A.M. Ostrowski, Solution of Equations in Euelidean and Banach Space, Academic Press, New york, 1973.
  • M.S. Petkovic, B. Neta and L.D. Petkovic, Multipoint Methods for Solving Nonlinear Equations, Academic Press, Amsterdam, 2013.
  • K. Pichaghchi, A new definition of local fractional derivative which satisfies the classical rules of differentiation, https://wikivisually.com/wiki/fractional calculus, 2019.
  • S. Plaza and J.M. Gutierrez, Dinamica del Metodo de Newton, Material Didactico de Matematicas 9, Universidad de La Rioja, Servicio de Publicaciones, 2013.
  • R.C. Robinson, An Introduction to Dynamical Systems, Continuous and Discrete, Am. Math. Soc. Providence, 2012.
  • P. Sargolzaei and F. Soleymani, Accurate fourteenth-order methods for solving nonlinear equations, Numer. Algorithms 58 (2011), pp. 513–527. doi: 10.1007/s11075-011-9467-4
  • T. Sauer, Numerical Analysis, 2nd ed., Pearson, USA, 2012.
  • K. Sayevand and H. Jafari, On systems of nonlinear equations: some modified iteration formulas by the homotopy perturbation method with accelerated fourth- and fifth-order convergence, Appl. Math. Model. 40 (2016), pp. 1467–1476. doi: 10.1016/j.apm.2015.06.030
  • K. Sayevand and K. Pichaghchi, Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calculus Appl. Anal. 18(3) (2015), pp. 621–641.
  • K. Sayevand and M.R. Rostami, General fractional variational problem depending on indefinite integrals. Numer. Algorithms 72(4) (2016), pp. 959–987. doi: 10.1007/s11075-015-0076-5
  • S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in rn, J. Math. Phys. 54(3) (2013), pp. 031501. doi: 10.1063/1.4793990
  • R. Shah, H. Khan, P. Kumam and M. Arif, An analytical technique to solve the system of nonlinear fractional partial differential equations, Mathematics 7 (2019), pp. 505. doi:10.3390/math7060505
  • J.R. Sharma, R.K. Guha and P. Gupta, Improved King's methods with optimal order of convergence based on rational approximations, Appl. Math. Lett. 26 (2013), pp. 473–480. doi: 10.1016/j.aml.2012.11.011
  • J.R. Sharma, R.K. Guha and R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numer Algor. 62 (2013), pp. 307–323. doi: 10.1007/s11075-012-9585-7
  • V.E. Tarasov, No violation of the Leibniz rule. no fractional derivative, Commun. Nonlinear Sci. 18 (2013), pp. 2945–2948. doi: 10.1016/j.cnsns.2013.04.001
  • V.E. Tarasov, No nonlocality. no fractional derivative, Commun. Nonlinear Sci. 62 (2018), pp. 157–163. doi: 10.1016/j.cnsns.2018.02.019
  • J.F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1982.
  • V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Springer, Berlin, 2013.
  • M.Z. Ullah, F. Soleymani and A.S. Al-Fhaid, Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs, Numer. Algor. 67 (2014), pp. 223–242. doi: 10.1007/s11075-013-9784-x
  • J.L. Varona, Graphic and numerical comparison between iterative methods, Math. Intell. 24 (2002), pp. 37–46. doi: 10.1007/BF03025310
  • X. Wang and T. Zhang, Efficient n-point iterative methods with memory for solving nonlinear equations, Numer. Algor. 70 (2015), pp. 357–375. doi: 10.1007/s11075-014-9951-8
  • Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), pp. 200–218. doi: 10.1016/j.apm.2009.04.006
  • D.M. Young and R.T. Gregory, A Survey of Numerical Methods, Dover, New York, 1988.
  • F. Zafar, N. Hussain, Z. Fatimah and A. Kharal, Optimal sixteenth order convergent method based on Quasi-Hermite interpolation for computing roots, Hindawi Publishing Corporation, Volume 2014, Article ID 410410, 18 pages, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.