208
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Solving semi-linear stiff neutral equations by implicit–explicit Runge-Kutta methods

&
Pages 2561-2581 | Received 28 Jan 2019, Accepted 12 Jan 2020, Published online: 30 Jan 2020

References

  • U.M. Ascher, S.J. Ruuth, and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time dependent parital differential equatons, Appl. Numer. Math. 25 (1997), pp. 151–167. doi: 10.1016/S0168-9274(97)00056-1
  • C.T.H. Baker and C.A.H. Paul, A global convergence theorem for a class of parallel continuous explicit Runge-Kutta methods and vanishing lag delay differential equations, SIAM J. Numer. Anal. 33 (1996), pp. 1559–1576. doi: 10.1137/S0036142993251413
  • A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 2003.
  • S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic syatems, SIAM J. Numer. Anal. 45 (2007), pp. 1600–1621. doi: 10.1137/060656929
  • S. Boscarino, R. Bürger, P. Mulet, G. Russo, and L.M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems, SIAM J. Sci. Comput. 37 (2015), pp. B305–B331. doi: 10.1137/140967544
  • K. Burrage, W.H. Hundsdorfer, and J.G. Verwer, A study of B-convergence of Runge-Kutta methods, Computing. 36 (1986), pp. 17–34. doi: 10.1007/BF02238189
  • M. Calvo, S. Gonzalez-Pinto, and J.I. Montijano, Runge-Kutta methods for the numerical solution of stiff semilinear systems, BIT 40 (2000), pp. 611–639. doi: 10.1023/A:1022332200092
  • Y. Chao, A. Xiao, and H. Liu, Nonlinear stability and B-convergenc of additive Runge-Kutta methods for nonlinear stiff problems, Adv. Appl. Math. Mech. 7 (2015), pp. 472–495. doi: 10.4208/aamm.2013.m230
  • G.J. Cooper and A. Sayfy, Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comput. 40 (1983), pp. 207–218. doi: 10.1090/S0025-5718-1983-0679441-1
  • G. Dahlquist, A special stability problem for linear multistep methods, BIT 3 (1963), pp. 27–43. doi: 10.1007/BF01963532
  • G. Dimarco, L. Pareschi, and V. Rispoli, Implicit-explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors, Commum. Comput. Phy. 15 (2014), pp. 1291–1319. doi: 10.4208/cicp.090513.151113a
  • E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, Berlin, 1996.
  • J.K. Hale and L.S.M. Verduyn, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
  • I. Higueras, Strong stability of additive Runge-Kutta methods, SIAM J. Numer. Anal. 44 (2006), pp. 1735–1758. doi: 10.1137/040612968
  • G. Hu and T. Mitsui, Stability analysis of numerical methods for systems of neutral delay-differential equations, BIT 35 (1995), pp. 504–515. doi: 10.1007/BF01739823
  • W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Berlin, 2003.
  • G. Izzo and Z. Jackiewicz, Highly stable implicit-explicit Runge-Kutta methods, Appl. Numer. Math.13 (2017), pp. 71–92. doi: 10.1016/j.apnum.2016.10.018
  • Z. Jackiewicz and E. Lo, The numerical integration of neutral functional-differential equations by fully implicit one-step methods, J. Appl. Math. Mech. 75 (1995), pp. 207–221.
  • O. Knoth and R. Wolke, Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flow, Appl. Numer. Math. 28 (1998), pp. 327–341. doi: 10.1016/S0168-9274(98)00051-8
  • V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • T. Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math. 215 (2008), pp. 182–195. doi: 10.1016/j.cam.2007.04.003
  • T. Koto, Stability of IMEX Runge-Kutta methods for delay differential equations, J. Comput. Appl. Math. 211 (2008), pp. 201–212. doi: 10.1016/j.cam.2006.11.011
  • S. Li, Numerical Analysis for Stiff Ordinary and Functional Differential Equations, Hunan Science and Technology Press, Xiangtan, 1997.
  • L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, Adv. Theor. Comput. Math. 3 (2000), pp. 269–289.
  • L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (2005), pp. 129–155.
  • J. Shin, H.G. Lee and J.Y. Lee, Convex splitting Runge-Kutta methods for phase-field models, Comput. Math. Appl. 73 (2017), pp. 2388–2403. doi: 10.1016/j.camwa.2017.04.004
  • J. Shin, H.G. Lee, and J.Y. Lee, Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme, J. Comput. Phys. 347 (2017), pp. 367–381. doi: 10.1016/j.jcp.2017.07.006
  • Z. Tan and C. Zhang, Implicit-explicit one-leg methods for nonlinear stiff neutral equations, Appl. Math. Comput. 335 (2018), pp. 196–210.
  • Z. Tan and C. Zhang, Implicit-explicit Runge-Kutta methods for semi-linear stiff functional differential equations with non-vanishing time-variable delay. 2018. Submitted.
  • W. Wang, S. Li, and K. Su, Nonlinear stability of Runge-Kutta methods for neutral delay differential equations, J. Comput. Appl. Math. 214 (2008), pp. 175–185. doi: 10.1016/j.cam.2007.02.031
  • W. Wang, L. Wen, and S. Li, Stability of linear multistep methods for nonlinear neutral delay differential equations in Banach space, J. Comput. Appl. Math. 233 (2010), pp. 2423–2437. doi: 10.1016/j.cam.2009.10.026
  • W. Wang, Y. Zhang, and S. Li, Nonlinear stability of one-leg methods for delay differential equations of neutral type, Appl. Numer. Math. 58 (2008), pp. 122–130. doi: 10.1016/j.apnum.2006.11.002
  • L. Wen and X. Liu, Numerical stability of one-leg methods for neutral delay differential equations, BIT 52 (2012), pp. 251–269. doi: 10.1007/s10543-011-0352-2
  • C. Zhang, Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations, J. Comput. Math. 20 (2002), pp. 583–590.
  • C. Zhang and Y. He, The extended one-leg methods for nonlinear neutral delay-integro-differential equations, Appl. Numer. Math. 59 (2009), pp. 1409–1418. doi: 10.1016/j.apnum.2008.08.006
  • C. Zhang and L. Li, Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations, Appl. Math. Comput. 119 (2001), pp. 109–115.
  • C. Zhang and S. Vandewalle, Stability criteria for exact and discrete solutions of neutral multidelay-integro-differential equations, Adv. Comput. Math. 28 (2008), pp. 383–399. doi: 10.1007/s10444-007-9037-4
  • C. Zhang, W. Wang, B. Liu, and T. Qin, Multi-domain Legendre spectral collocation method for nonlinear neutral equations with piecewise continuous argument, Int. J. Comput. Math. 95 (2018), pp. 2419–2432. doi: 10.1080/00207160.2017.1398321
  • C. Zhang and S. Zhou, The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differential equations, Sci. China (ser. A) 41 (1998), pp. 1151–1157. doi: 10.1007/BF02871977
  • C. Zhang and S. Zhou, Stability analysis of LMMs for systems of neutral multidelay-differential equations, Comput. Math. Appl. 38 (1999), pp. 113–117. doi: 10.1016/S0898-1221(99)00209-6
  • C. Zhang, S. Zhou, and X. Liao, D-convergence and GDN-stability of Runge-Kutta methods for a class of delay system, Appl. Numer. Math. 37 (2001), pp. 161–170. doi: 10.1016/S0168-9274(00)00032-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.