319
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions

, &
Pages 1-10 | Received 20 Nov 2019, Accepted 16 Jan 2020, Published online: 05 Feb 2020

References

  • B. Ahmad, J.J. Nieto, A. Alsaedi, and M El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl. 13 (2012), pp. 599–606. doi: 10.1016/j.nonrwa.2011.07.052
  • A.D. Baczewski and S.D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys. 139 (2013), p. 044107. doi:10.1063/1.4815917.
  • O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul. 42 (2017), pp. 675–681. doi: 10.1016/j.cnsns.2016.05.023
  • H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fixed Point Theory Appl. 20 (2018), p. 675. doi: 10.1007/s11784-018-0540-7
  • F. Bahrami, H. Fazli, and A. Jodayree Akbarfam, A new approach on fractional variational problems and Euler-Lagrange equations, Commun. Nonlinear Sci. Numer. Simul. 23 (2015), pp. 39–50. doi: 10.1016/j.cnsns.2014.10.025
  • M.N. Berberan-Santos, Properties of the Mittag–Leffler relaxation function, J. Math. Chem. 38(4) (2005), pp. 629–635. doi: 10.1007/s10910-005-6909-z
  • J.P. Bouchaud and R. Cont, A Langevin approach to stock market fluctuations and crashes, Eur. Phys. J. B 6(4) (1998), pp. 543–550. doi: 10.1007/s100510050582
  • L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), pp. 494–505. doi: 10.1016/0022-247X(91)90164-U
  • M. Ceriotti and D.E. Manolopoulos, Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei, Phys. Rev. Lett. 109(10) (2012), p. 100604. doi:10.1103/PhysRevLett.109.100604.
  • H. Chen, X. Hu, J. Ren, et al., L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. Int. J. Mod. Sim. Sci. Comp. 10(1) (2019), p. 1941006.
  • F. Chen and Y. Zhou, Attractivity of fractional functional differential equations, Comput. Math. Appl.62 (2011), pp. 1359–1369. doi: 10.1016/j.camwa.2011.03.062
  • W.T. Coffey, Yu.P. Kalmykov, and J.T. Waldron, The Langevin Equation, 2nd ed., World Scientific, Singapore, 2004.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
  • Y. Ding, Z. Wei, J. Xu, and D. ÓRegan, Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian, J. Comput. Appl. Math. 288 (2015), pp. 151–158. doi: 10.1016/j.cam.2015.04.002
  • S. Eule, R. Friedrich, F. Jenko, and D. Kleinhans, Langevin approach to fractional diffusion equations including inertial effects, J. Phys. Chem. B 111(39) (2007), pp. 11474–11477. doi: 10.1021/jp072173h
  • K.S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E 73 (2006), p. 061104. doi: 10.1103/PhysRevE.73.061104
  • K.S. Fa, Fractional Langevin equation and Riemann–Liouville fractional derivative, Eur. Phys. J. E24 (2007), pp. 139–143. doi: 10.1140/epje/i2007-10224-2
  • T.Y. Fan, Generalized Dynamics of Soft-Matter Quasicrystals, Springer, Singapore, 2017.
  • H. Fazli and F. Bahrami, On the steady solutions of fractional reaction–diffusion equations, Filomat31 (2017), pp. 1655–1664. doi: 10.2298/FIL1706655F
  • H. Fazli and J.J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos, Solitons Fract. 114 (2018), pp. 332–337. doi: 10.1016/j.chaos.2018.07.009
  • H. Fazli and J.J. Nieto, Nonlinear sequential fractional differential equations in partially ordered spaces, Filomat 32 (2018), pp. 4577–4586. doi: 10.2298/FIL1813577F
  • H. Fazli and J.J. Nieto, An investigation of fractional Bagley-Torvik equation, Open Math. 17 (2019), pp. 499–512. doi: 10.1515/math-2019-0040
  • H. Fazli, J.J. Nieto, and F. Bahrami, On the existence and uniqueness results for nonlinear sequential fractional differential equations, Appl. Comput. Math. 17 (2018), pp. 36–47.
  • H. Fazli, F. Bahrami, and J.J. Nieto, General Basset-Boussinesq-Oseen equation: Existence, uniqueness, approximation and regularity of solutions, Int. J. Comput. Math. (2019). doi:10.1080/00207160.2019.1658870.
  • J. Fricks, L. Yao, T.C. Elston, and M.G. Forest, Time-domain methods for diffusive transport in soft matter, SIAM J. Appl. Math. 69 (2009), pp. 1277–1308. doi: 10.1137/070695186
  • H. Gong, J. Zhang, H. Guo, A superlinear convergence scheme for nonlinear fractional differential equations and its fast implement. International Journal of Modeling, Simulation, and Scientific Computing 10(01) (2019), p. 1941001). doi:10.1142/S1793962319410010.
  • D. Gordon, V. Krishnamurthy, and S.H. Chung, Generalized Langevin models of molecular dynamics simulations with applications to ion channels, J. Chem. Phys. 131 (2009), p. 134102. doi: 10.1063/1.3233945
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.
  • R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29 (1966), pp. 255–284. doi: 10.1088/0034-4885/29/1/306
  • D.S. Lemons and A. Gythiel, Paul Langevin's 1908 paper ‘On the Theory of Brownian Motion’ [‘Sur la théorie du mouvement brownien,’ C. R. Acad. Sci. (Paris), 146, 530–533 (1908)], Am. J. Phys.65(11) (1997), pp. 1079–1081. doi: 10.1119/1.18725
  • M. Li, A high-order split-step finite difference method for the system of the space fractional CNLS, EPJ Plus 134 (2019), pp. 244.
  • M. Li and C. Huang, An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian, Numer. Methods Partial Differ. Equ. 35(1) (2019), pp. 394–421. doi: 10.1002/num.22305
  • M. Li and Y. Zhao, A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator, Appl. Math. Comput. 338(1) (2018), pp. 758–773.
  • M. Li, C. Huang, and N. Wang, Galerkin finite element method for nonlinear fractional Ginzburg-Landau equation, Appl. Numer. Math. 118 (2017), pp. 131–149. doi: 10.1016/j.apnum.2017.03.003
  • M. Li, X. Gu, C. Huang, M. Fei, and G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys. 358 (2018), pp. 256–282. doi: 10.1016/j.jcp.2017.12.044
  • M. Li, D. Shi, J. Wang, and W. Ming, Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation, Appl. Numer. Math.142 (2019), pp. 47–63. doi: 10.1016/j.apnum.2019.02.004
  • A. Liemert, T. Sandev, and H. Kantz, Generalized Langevin equation with tempered memory kernel, Phys. A 466 (2017), pp. 356–369. doi: 10.1016/j.physa.2016.09.018
  • K. Lü and J.D. Bao, Numerical simulation of generalized Langevin equation with arbitrary correlated noise, Phys. Rev. E 72 (2005), p. 067701.
  • E. Lutz, Fractional Langevin equation, Phys. Rev. E 64 (2001), p. 051106. doi: 10.1103/PhysRevE.64.051106
  • F. Mainardi and P. Pironi, The fractional langevin equation: Brownian motion revisited, Extracta Math. 10 (1996), pp. 140–154.
  • R. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications, Oxford University Press, Oxford, 2002.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • K.S. Miller and S.G. Samko, Completely monotonic functions, Integral Transforms Spec. Funct. 12 (2001), pp. 389–402. doi: 10.1080/10652460108819360
  • R. Morgado, F.A. Oliveira, G.G. Batrouni, and A. Hansen, Relation between anomalous and normal diffusion in systems with memory, Phys. Rev. Lett. 89(10) (2002), p. 100601. doi: 10.1103/PhysRevLett.89.100601
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • T.R. Prabhakar, A singular integral equation with a generalized Mittag–Leffler function in the kernel, Yokohama Math. J. 19 (1971), pp. 7–15.
  • F. Safari and P. Azarsa, Backward substitution method based on Müntz polynomials for solving the nonlinear space fractional partial differential equations, Math. Method Appl. Sci. 43 (2019), pp. 1–18.
  • F. Safari and W. Chen, Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations, Comput. Math. Appl. 78 (2019), pp. 1594–1607. doi: 10.1016/j.camwa.2019.02.001
  • L. Schwan, O. Umnova, C. Boutin, and J.P. Groby, Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions, J. Appl. Phys. 123 (2018), p. 091712. doi: 10.1063/1.5011385
  • J. Wang and X. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput. 258 (2015), pp. 72–83.
  • K.G. Wang and M. Tokuyama, Nonequilibrium statistical description of anomalous diffusion, Phys. A265 (1999), pp. 341–351. doi: 10.1016/S0378-4371(98)00644-X
  • G.T. Wang, R.P. Agarwal, and A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett. 25 (2012), pp. 1019–1024. doi: 10.1016/j.aml.2011.09.078
  • T. Yu, K. Deng, and M. Luo, Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul.19 (2014), pp. 1661–1668. doi: 10.1016/j.cnsns.2013.09.035
  • R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9 (1973), pp. 215–220. doi: 10.1007/BF01008729
  • R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.