123
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Discrete-time orthogonal spline collocation method for a modified anomalous diffusion equation

, &
Pages 288-304 | Received 07 Jan 2019, Accepted 23 Jan 2020, Published online: 19 Mar 2020

References

  • V.V. Anh and N.N. Leonenko, Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theor. Relat. Fields 12 (2002), pp. 381–408. doi: 10.1007/s004400200217
  • H. Chen, F. Holland, and M. Stynes, An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions, Appl. Numer. Math. 139 (2019), pp. 52–61. doi: 10.1016/j.apnum.2019.01.004
  • H. Chen, X.H. Hu, J.C. Ren, T. Sun, and Y.F. Tang, L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity, Int. J. Model. Simul. Sci. Comput. 10 (2019), pp. 1941006. doi: 10.1142/S179396231941006X
  • C. Chen, F. Liu, V. Anh, and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput. 32 (2010), pp. 1740–1760. doi: 10.1137/090771715
  • C. Chen, F. Liu, I. Turner, and V. Anh, Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid, Comput. Math. Appl. 62 (2011), pp. 971–986. doi: 10.1016/j.camwa.2011.03.065
  • G. Fairweather, H.Z. Zhang, X.H. Yang, and D. Xu, A backward Euler orthogonal spline collocation method for the time-fractional Fokker-plank equation, Numer. Methods Partial Differ. Equ. 31 (2015), pp. 1534–1550. doi: 10.1002/num.21958
  • R.I. Fernandes and G. Fairweather, Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. Methods Partial Differ. Equ. 9 (1993), pp. 191–211. doi: 10.1002/num.1690090207
  • D.D. He and K.J. Pan, A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation, Appl. Math. Comput. 271 (2015), pp. 323–336.
  • D.D. He and K.J. Pan, An energy preserving finite difference scheme for the Poisson-Nernst-Planck system, Appl. Math. Comput. 287 (2016), pp. 214–223.
  • D.D. He and K.J. Pan, An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation, Numer. Algor. 79 (2018), pp. 899–925. doi: 10.1007/s11075-017-0466-y
  • B.I. Henry and S.L. Wearne, Fractional reaction-diffusion, Phys. A 276 (2000), pp. 448–455. doi: 10.1016/S0378-4371(99)00469-0
  • T.A.M. Langlands, Solution of a modified fractional diffusion equation, Phys. A 367 (2006), pp. 136–144. doi: 10.1016/j.physa.2005.12.012
  • Q. Liu, F. Liu, I. Turner, and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model. 35 (2011), pp. 4103–4116. doi: 10.1016/j.apm.2011.02.036
  • F. Liu, C. Yang, and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math. 231 (2009), pp. 160–176. doi: 10.1016/j.cam.2009.02.013
  • Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl. 351 (2009), pp. 218–223. doi: 10.1016/j.jmaa.2008.10.018
  • Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59 (2010), pp. 1766–1772. doi: 10.1016/j.camwa.2009.08.015
  • Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal. 19 (2016), pp. 676–695. doi: 10.1515/fca-2016-0036
  • M. Magdziarz and A. Weron, Competition between subdiffusion and Lévy flights: a Monte Carlo approach, Phys. Rev. E 75 (2007), pp. 056702.
  • Q.J. Meng, L.P. Yin, X.Q. Jin, and F.L. Qiao, Numerical solutions of the coupled nonlinear Schrödinger equations by orthogonal spline collocation method, Commun. Comput. Phys. 12 (2012), pp. 1392–1416. doi: 10.4208/cicp.180411.090112a
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • A. Mohebbi, M. Abbaszade, and M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys. 240 (2013), pp. 36–48. doi: 10.1016/j.jcp.2012.11.052
  • I.M. Sokolov, A.V. Chechkin, and J. Klafter, Distributed-order fractional kinetics, Acta Phys. Pol. B 35 (2004), pp. 1323–1341.
  • I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einstein's Brownian motion, Chaos 15 (2005), pp. 026103. doi: 10.1063/1.1860472
  • W.Y. Tian, H. Zhou, and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • Z.B. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), pp. 1–15. doi: 10.1016/j.jcp.2014.08.012
  • S.S. Wang and L.M. Zhang, A class of conservative orthogonal spline collocation scheme for solving coupled Klein-Gordin-Schrödinger equations, Appl. Math. Comput. 203 (2008), pp. 799–812.
  • S.S. Wang and L.M. Zhang, Spit-step orthogonal spline collocation methods for nonlinear Schrödinger equations in one, two and three dimentions, Appl. Math. Comput. 218 (2011), pp. 1903–1916.
  • S.S. Wang, L.M. Zhang, and R. Fan, Discrete-time orthogonal spline collocation methods for the nonlinear Schrödinger equation with wave operator, J. Comput. Appl. Math. 235 (2011), pp. 1993–2005. doi: 10.1016/j.cam.2010.09.025
  • Y. Yan and G. Fairweather, Orthogonal spline collocation methods for some partial integro-differential equations, SIAM J. Numer. Anal. 29 (1992), pp. 755–768. doi: 10.1137/0729047
  • X.H. Yang, H.X. Zhang, and Q. Tang, A spline collocation method for a fractional mobile-immobile equation with variable coefficients, Comput. Appl. Math. 39 (2020), pp. 34. doi:10.1007/s40314-019-1013-3
  • X.H. Yang, H.X. Zhang, and D. Xu, Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys. 256 (2014), pp. 824–837. doi: 10.1016/j.jcp.2013.09.016
  • X.H. Yang, H.X. Zhang, and D. Xu, WSGD-OSC scheme for two-timensional distributed order fractional reaction-diffusion equation, J. Sci. Comput. 76 (2018), pp. 1502-1520. doi: 10.1007/s10915-018-0672-3
  • X.H. Yang, H.X. Zhang, Q. Zhang, G.W. Yuan, and Z.Q. Sheng, The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker-Planck equations on distorted meshes, Appl. Math. Lett. 97 (2019), pp. 99–106. doi: 10.1016/j.aml.2019.05.030
  • H.X. Zhang, X.H. Yang, and D. Xu, A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation, Numer. Algor. 80 (2019), pp. 849–877. doi: 10.1007/s11075-018-0509-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.