182
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An efficient high-order numerical algorithm for the time fractional Fokker–Planck equations

& ORCID Icon
Pages 357-366 | Received 20 Jan 2020, Accepted 16 Mar 2020, Published online: 29 Mar 2020

References

  • R.T. Baillie, Long memory processes and fractional integration in econometrics, J. Econom. 73 (1996), pp. 5–59. doi: 10.1016/0304-4076(95)01732-1
  • E. Barkai, Fractional Fokker-Planck equation, solution, and application, Phys. Rev. E 63 (2001), pp. 046118. doi: 10.1103/PhysRevE.63.046118
  • W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys. 227 (2007), pp. 1510–1522. doi: 10.1016/j.jcp.2007.09.015
  • G.H. Gao and Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), pp. 586–595. doi: 10.1016/j.jcp.2010.10.007
  • Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model 39 (2015), pp. 1163–1171. doi: 10.1016/j.apm.2014.07.029
  • C.C. Ji and Z.Z. Sun, A high-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput. 64 (2015), pp. 959–985. doi: 10.1007/s10915-014-9956-4
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, CA, 2006.
  • R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett. 82 (1999), pp. 3563–3567. doi: 10.1103/PhysRevLett.82.3563
  • R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), pp. 161–208. doi: 10.1088/0305-4470/37/31/R01
  • A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Springer, New York, 2007.
  • J. Quintana-Murillo and S.B. Yuste, An explicit numerical method for the fractional cable equation, Int. J. Differ. Equ. 2011 (2011), p. 12. Article ID 231920. doi: 10.1186/1687-1847-2011-12
  • N.H. Sweilam and S.M. AL-Mekhlafi, A novel numerical method for solving 2-D time fractional cable equation, Eur. Phys. J. Plus 7 (2019), pp. 134–323.
  • W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 294 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • S. Vong and Z. Wang, A high order compact finite difference scheme for time fractional Fokker-Planck equations, Appl. Math. Lett. 43 (2015), pp. 38–43. doi: 10.1016/j.aml.2014.11.007
  • Y.M. Wang, A compact finite difference method for solving a class of time fractional convection subdiffusion equations, BIT 55 (2015), pp. 1187–1217. doi: 10.1007/s10543-014-0532-y
  • T. Wang and B. Guo, A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation, J. Comput. Appl. Math. 233 (2009), pp. 878–888. doi: 10.1016/j.cam.2009.07.058
  • S.Y. Zhai, X.L. Feng, and Y.N. He, An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J. Comput. Phys. 269 (2014), pp. 138–155. doi: 10.1016/j.jcp.2014.03.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.