176
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Computational modelling and bifurcation analysis of reaction diffusion epidemic system with modified nonlinear incidence rate

ORCID Icon, , , ORCID Icon, &
Pages 517-535 | Received 29 Apr 2019, Accepted 05 Apr 2020, Published online: 14 May 2020

References

  • N. Ahmed, M. Jawaz, M. Rafiq, M.A. Rehman, M. Ali, and M.O. Ahmad, Numerical treatment of an epidemic model with spatial diffusion, J. Appl. Environ. Biol. Sci. 8(6) (2018), pp. 17–29.
  • N. Ahmed, M. Rafiq, M.A. Rehman, M. Ali, and M.O. Ahmad, Numerical modelling of SEIR measles dynamics with diffusion, Proc. 3rd Int. Conf., Commun. Math. Appl. 9(3) (2018), pp. 315–326.
  • N. Ahmed, M. Rafiq, M.A. Rehman, M.S. Iqbal, and M. Ali, Numerical modelling of three dimensional brusselator reaction diffusion system, AIP Adv. 9 (2019), p. 015205, doi:10.1063/1.5070093.
  • N. Ahmed, N. Shahid, Z. Iqbal, M. Jawaz, M. Rafiq, S.S. Tahira, and M.O. Ahmad, Numerical modelling of the SEIQV epidemic model with saturated incidence rate, J. Appl. Environ. Biol. Sci.8(4) (2018), pp. 67–82.
  • R. Anguelov and J.M.S. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Diff. Equ. 17 (2001), pp. 518–543. doi: 10.1002/num.1025
  • A.R. Appadu, J.M.-S. Lubuma, and N. Mphephu, Computation study of three numerical methods for some linear and nonlinear advection-diffusion-reaction problems, Prog. Comput. Fluid Dyn. (PCFD)17 (2017).
  • V. Capasso and G. Serio, A generalization of Kermack–Mckendric deterministic epidemic model, Math. Biosci. 42 (1978), pp. 43–61. doi: 10.1016/0025-5564(78)90006-8
  • A. Chakrabrty, M. Singh, B. Lucy, and P. Ridland, Predator-prey model with pry- taxis and diffusion, Math. Comput. Model. 46 (2007), pp. 482–498. doi: 10.1016/j.mcm.2006.10.010
  • M. Chapwanya, J.M.-S. Lubuma, and R.E. Mickens, Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences, Comput. Math. Appl. 68 (2014), pp. 1071–1082. doi: 10.1016/j.camwa.2014.04.021
  • B.M. Chen-Charpentier and H.V. Kojouharov, Unconditionally positivity preserving scheme for advection–diffusion–reaction equations, Math. Comput. Model. 57 (2013), pp. 2177–1285. doi: 10.1016/j.mcm.2011.05.005
  • S. Chinviriyasit and W. Chinviriyasit, Numerical modeling of SIR epidemic model with diffusion, Appl. Math. Comp. 216 (2010), pp. 395–409. doi: 10.1016/j.amc.2010.01.028
  • I. Dag, A. Sahin, and A. Korkmaz, Numerical investigation of the solution of fisher's equation via the B-spline galerkin method, Numer. Methods Partial Differ. Equ. 26(6) (2010), pp. 1483–1503.
  • D. Ding and X. Ding, Dynamic consistent non-standard numerical scheme for a dengue disease transmission model, J. Differ. Equ. Appl. 20 (2014), pp. 492–505. doi: 10.1080/10236198.2013.858715
  • R.H. Enns and G.C. McGuire, Nonlinear Physics with Maple for Scientists and Engineers, Birkhauser, Boston, MA, 1997.
  • U. Fatima, M. Ali, N. Ahmed, and M. Rafiq, Numerical modelling of the susceptible latent breaking-out quarantine computer virus epidemic dynamics, Heliyon 4 (2018), p. e00631. doi: 10.1016/j.heliyon.2018.e00631
  • T. Fujimoto and R. Ranade, Two characterizations of inverse-positive matrices: The Hawkins-Simon condition and the le chatelier-braun principle, Electron. J. Linear Algebra 11 (2004), pp. 59–65. doi: 10.13001/1081-3810.1122
  • W.H. Hamer, Epidemic disease in England, Lancet 1 (1906), pp. 733–739.
  • Z. Hu, Z. Teng, and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. Real World Appl. 13 (2012), pp. 2017–2033. doi: 10.1016/j.nonrwa.2011.12.024
  • G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol. 63 (2011), pp. 125–139. doi: 10.1007/s00285-010-0368-2
  • A. Jaichuang and W. Chinviriyasit, Numerical modelling of influenza model with diffusion, Int. J. Appl. Phys. Math. 4(1) (2014). doi: 10.7763/IJAPM.2014.V4.247
  • L. Jodar, R.J. Villanueva, A.J. Arenas, and G.C. Gonzalez, Nonstandard numerical methods for a mathematical model for influenza disease, Math. Comput. Simul. 79 (2008), pp. 622–633. doi: 10.1016/j.matcom.2008.04.008
  • A. Kaddar, On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate, Electron. J. Differ. Equ. 133 (2009), pp. 1–7.
  • W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London Ser. A, 115 (1927), pp. 700–721, Part 1.
  • A. Korkmaz and I. Dag, Crank–Nicolson-differential quadrature algorithms for the Kawahara equation, Chaos Solitons Fractals 42(1) (2009), pp. 65–73. doi: 10.1016/j.chaos.2008.10.033
  • K. Manna and S.P. Chakrabarty, Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids, J. Differ. Equ. Appl. 21 (2015), pp. 918–933. doi: 10.1080/10236198.2015.1056524
  • A.G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc. 44 (1926), pp. 98–130. doi: 10.1017/S0013091500034428
  • R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.
  • R.E. Mickens, Relation between the time and space step-sizes in nonstandard finite-difference schemes for the fisher equation, Numer. Methods Partial Diff. Eq. 13 (1997), pp. 51–55. doi: 10.1002/(SICI)1098-2426(199701)13:1<51::AID-NUM4>3.0.CO;2-L
  • R.E. Mickens, A nonstandard FD scheme for a fisher PDE having nonlinear diffusion, Comput. Math. Appl. 45 (2003), pp. 429–436. doi: 10.1016/S0898-1221(03)80028-7
  • R.E. Mickens, A nonstandard FD scheme for an advection-reaction equation, J. Diff. Eq. Appl. 10 (2004), pp. 1307–1312. doi: 10.1080/10236190410001652838
  • S.M. Moghadas, M.E. Alexander, B.D. Corbett, and A.B. Gumel, A positivity-preserving Mickens-type discretization of an epidemic model, J. Differ. Equ. Appl. 9 (2003), pp. 1037–1051. doi: 10.1080/1023619031000146913
  • K.C. Patidar, Nonstandard finite difference methods: Recent trends and further developments, J. Differ. Equ. Appl. 22 (2016), pp. 817–849. doi: 10.1080/10236198.2016.1144748
  • W. Qin, L. Wang, X. Ding, A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion. J. Differ. Equ. Appl. 20 (2014), pp. 1641–1651. doi: 10.1080/10236198.2014.968565
  • M. Rafiq, M.O. Ahmad, S. Iqbal, Numerical modeling of internal transmission dynamics of dengue virus, 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE Islamabad, 2016, pp. 85–91.
  • G.F. Sun, G.R. Liu, and M. Li, An efficient explicit finite-Difference scheme for simulating coupled biomass growth on nutritive substrates, Math. Prob. Eng. (2015), pp. 1–17.
  • A. Suryanto, W.M. Kusumawinahyu, I. Darti, and I. Yanti, Dynamically consistent discrete epidemic model with modified saturated incidence rate, Comp. Appl. Math. 32 (2013), pp. 373–383. doi: 10.1007/s40314-013-0026-6
  • Z.A. Zafar, K. Rehan, M. Mushtaq, Numerical treatment for nonlinear Brusselator chemical model. J. Differ. Equ. Appl. 23 (2017), pp. 521–538. doi: 10.1080/10236198.2016.1257005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.