84
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

MLPG method based on particular solution to identify a time-dependent boundary source for the time-fractional diffusion equation

Pages 657-670 | Received 17 Jan 2019, Accepted 17 May 2020, Published online: 18 Jun 2020

References

  • S. Abbasbandy and A. Shirzadi, A meshless method for two-dimensional diffusion equation with an integral condition, Eng. Anal. Bound. Elem. 34(12) (2010), pp. 1031–1037.
  • S. Abbasbandy and A. Shirzadi, MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions, Appl. Numer. Math. 61(2) (2011), pp. 170–180.
  • N. Abdollahi Asl and D. Rostamy, Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition, J. Comput. Appl. Math. 355 (2019), pp. 36–50.
  • S.N. Atluri and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech. 22(2) (1998), pp. 117–127.
  • S.N. Atluri and S. Shen, The meshless local Petrov–Galerkin (MLPG) method: a simple and less costly alternative to the finite element and boundary element methods, Comput. Modeling. Eng. Sci.3 (2002), pp. 11–51.
  • S.N. Atluri, The Meshless Method (MLPG) for Domain and BIE Discretizations, Tech Science Press, 2004.
  • M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), pp. 529–539.
  • W. Chen, Z.J. Fu, and C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods, Springer, 2014.
  • M. Dehghan, Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition, J. Comput. Appl. Math. 106(2) (1999), pp. 255–269.
  • M. Dehghan, A new ADI technique for two-dimensional parabolic equation with an integral condition, Comput. Math. Appl. 43(12) (2002), pp. 1477–1488.
  • M. Dehghan and D. Mirzaei, The meshless local Petrov-Galerkin (MLPG) method for the generalized two- dimensional non-linear Schrödinger equation, Eng. Anal. Bound. Elem. 32 (2008), pp. 747–756.
  • H. Fu, H. Wang, and Z. Wang, POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification, J. Sci. Comput. 74(1) (2018), pp. 220–243.
  • G.H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method to choosing a good ridge parameter, Technometrics 21 (1979), pp. 215-–223.
  • E.J. Kansa, Multiquadrics scattered data approximation scheme with applications to computational fluid- dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990), pp. 127–145.
  • E.J. Kansa, Multiquadrics -- a scattered data approximation scheme with applications to computational fluid dynamics. II. Solutions to parabolic,hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990), pp. 146–161.
  • S. Kazem and J.A. Rad, Radial basis functions method for solving of a non-local boundary value problem with Neumann's boundary conditions, Appl. Math. Model. 36(6) (2012), pp. 2360–2369.
  • S. Kazem, J.A Rad, K. Parand, and S. Abbasbandy, A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions, Z. Naturforsch. 66 (2011), pp. 591–598.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552.
  • S. Qasemi, D. Rostamy, and N. Abdollahi, The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method, Bit. Numer. Math. (2018). https://doi.org/10.1007/s10543-018-0731-z.
  • D. Rostamy and N. Abdollahi, Gegenbauer cardinal functions for the inverse source parabolic problem with a time-Fractional diffusion equation, J. Computat. Theoret. Trans. 46 (2017), pp. 307–329.
  • S. Sajavičius, Stability of the weighted splitting finite-difference scheme for a two-dimensional parabolic equation with two nonlocal integral conditions, Comput. Math. Appl. 64(11) (2012), pp. 3485–3499.
  • J. Sladek, V. Sladek, J. Krivacek, P.H. Wen, and Ch. Zhang, Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load, Comput. Methods Appl. Mech. Engrg. 196 (2007), pp. 2681–2691.
  • J. Sladek, V. Sladek, Ch. Zhang, and M. Schanz, Meshless local Petrov–Galerkin method for continuously nonhomogeneous linear viscoelastic solids, Comput. Mech. 37 (2006), pp. 279–289.
  • E. Shivanian, Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation, Eng. Anal. Bound. Elem. 50 (2015), pp. 249–257.
  • E. Shivanian and A. Jafarabadi, The numerical solution for the time-fractional inverse problem of diffusion equation, Eng. Anal. Bound. Elem. 91 (2018), pp. 50–59.
  • E. Shivanian and A. Jafarabadi, The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math. 129 (2018), pp. 1–25.
  • A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems, John Wiley, New York, Toronto, 1977.
  • W. Wang, M. Yamamoto, and B. Han, Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation, Inverse. Probl. 29 (2013), p. 095009.
  • J. Wang, T. Wei, and Y. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model. 37 (2013), pp. 8518–8532.
  • T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math. 78 (2014), pp. 95–111.
  • J.R. Xiao and M.A. McCarthy, Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations, Eur. J. Mech. A Solids 22 (2003), pp. 385–399.
  • L. Yan and F. Yang, The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition, Comput. Math. Appl. 70 (2015), pp. 254–264.
  • G. Yao, J. Kolibal, and C.S. Chen, A localized approach for the method of approximate particular solutions, Comput. Math. Appl. 61 (2011), pp. 76–87.
  • G.H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation, J. Comput. Appl. Math. 233 (2010), pp. 2631–2640.
  • G.H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation, Adv. Comput. Math. 36 (2012), pp. 377–398.
  • Z.Q. Zhang and T. Wei, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Appl. Math. Comput. 219 (2013), pp. 5972–5983.
  • Q. Zhuang, B. Yu, and X. Jiang, An inverse problem of parameter estimation for time fractional heat conduction in a composite medium using carbon-carbon experimental data, Phys. B Condens. Matter.456 (2015), pp. 9–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.