139
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Multisymplectic structure-preserving scheme for the coupled Gross–Pitaevskii equations

&
Pages 783-806 | Received 05 Nov 2019, Accepted 14 May 2020, Published online: 25 Jun 2020

References

  • M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269 (1995), pp. 198–201. doi: 10.1126/science.269.5221.198
  • W.Z. Bao and Y.Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Mod. 6 (2013), pp. 1–135. doi: 10.3934/krm.2013.6.1
  • W.Z. Bao and Y.Y. Cai, Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Math. Comput. 82 (2013), pp. 99–128. doi: 10.1090/S0025-5718-2012-02617-2
  • W.Z. Bao and Y.Y. Cai, Ground states and dynamics of spin-orbit-coupled Bose–Einstein condensates, SIAM J. Appl. Math. 75 (2015), pp. 492–517. doi: 10.1137/140979241
  • W.Z. Bao, Q. Du, and Y.Z. Zhang, Dynamics of rotating Bose–Einstein condensates and their efficient and accurate numerical computation. SIAM J. Appl. Math 66 (2006), pp. 758–786. doi: 10.1137/050629392
  • W.Z. Bao, H.L. Li, and J. Shen, A generalized Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31 (2009), pp. 3685–3711. doi: 10.1137/080739811
  • W.Z. Bao, D. Marahrens, and Q. Tanget al, A simple and efficient numerical method for computing the dynamics of rotating Bose–Einstein condensates via a rotating Lagrangian coordinate. SIAM J. Sci. Comput. 35 (2013), pp. A2671–A2695. doi: 10.1137/130911111
  • T.J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), pp. 184–193. doi: 10.1016/S0375-9601(01)00294-8
  • W.J. Cai, Y.J. Sun, Y.S. Wang, and H. Zhang, Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs. Inter. J. Comput. Math. 95 (2017), pp. 114–143. doi: 10.1080/00207160.2017.1335866
  • J.X. Cai, Y.S. Wang, and H. Liang, Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239 (2013), pp. 30–50. doi: 10.1016/j.jcp.2012.12.036
  • W.J. Cai, Y.S. Wang, and Y.Z. Song, Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations. J. Comput. Phys. 234 (2013), pp. 330–352. doi: 10.1016/j.jcp.2012.09.043
  • T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, Amer. Math. Soc., Providence, R.I., 2003.
  • M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi, and M. P. Tosi, Numerical solution of the Gross–Pitaevskii equation using an explicit finite difference scheme: An application to trapped Bose–Einstein condensates, Phys. Rev. E 62 (2000), pp. 1382–1389. doi: 10.1103/PhysRevE.62.1382
  • M. Chen, L.H. Kong, and Y.Q. Hong, Efficient structure-preserving schemes for good Boussinesq equation. Math. Meth. Appl. Sci. 41 (2018), pp. 1743–1752. doi: 10.1002/mma.4696
  • K.B. Davis, M.O. Mewes, and M.R. Andrewset al, Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75 (1995), pp. 3969–3973. doi: 10.1103/PhysRevLett.75.3969
  • K. Feng, On difference schemes and symplectic geometry, In K. Feng (ed.), Proc. 1984 Beijing Symp. Diff, Geometry and Diff. Equations, Beijing Science Press, 1985, pp. 42–58.
  • F.F. Fu and Y.L. Zhou, The symplectic integrator for two-dimensional Gross–Pitaevskii equations. J. Jiangxi Normal Univer. 40 (2016), pp. 599–602.
  • Y.Z. Gong, J.X. Cai, and Y.S. Wang, Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279 (2014), pp. 80–102. doi: 10.1016/j.jcp.2014.09.001
  • J.L. Hong and L.H. Kong, Novel multi-symplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term. Commun. Comput. Phys. 7 (2010), pp. 613–630. doi: 10.4208/cicp.2009.09.057
  • J.L. Hong and C. Li, Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006), pp. 448–472. doi: 10.1016/j.jcp.2005.06.001
  • J.L. Hong, Y. Liu, and H. Munthe-Kaaset al, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56 (2006), pp. 814–843. doi: 10.1016/j.apnum.2005.06.006
  • L.H. Kong, The splitting multisymplectic numerical methods for Hamiltonian systems. J. Jiangxi Normal Univer. 39 (2015), pp. 507–513.
  • L.H. Kong, M. Chen, and X.L. Yin, A novel kind of efficient symplectic scheme for Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 135 (2019), pp. 481–496. doi: 10.1016/j.apnum.2018.09.005
  • L.H. Kong, J.L. Hong, F.F. Fu, and J. Chen, Symplectic structure-preserving integrators for the two-dimensional Gross–Pitaevskii equation for BEC. J. Comput. Appl. Math. 235 (2011), pp. 4937–4948. doi:10.1016/j.cam.2011.04.019.
  • Y.P. Ma, L.H. Kong, J.L. Hong, and Y. Cao, High-order compact splitting multisymplectic method for the couplednonlinear Schrö‌dinger equations. Comput. Math. Appl. 61 (2011), pp. 319–333. doi:10.1016/j.camwa.2010.11.007.
  • M.R. Matthews, B.P. Anderson, and P.C. Haljanet al, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83 (1999), pp. 201–202.
  • J. Ming, Q.L. Tang, and Y.Z. Zhang, An efficient spectral method for computing dynamics of rotating two-component Bose–Einstein condensates via coordinate transformation. J. Comput. Phys. 258 (2014), pp. 538–554. doi: 10.1016/j.jcp.2013.10.044
  • M. Modugno, F. Dalfovo, C. Fort, P. Maddaloni, and F. Minardi, Dynamics of two colliding Bose–Einstein condensates in an elongated magnetosatic trap, Phys. Rev. A 62 (2000), pp. 063607.
  • Z.G. Mu, H.C. Li, and Y.S. Wang, A novel energy-preserving scheme for the coupled nonlinear Schrödinger equations, Inter. J. Comput. Math. 95 (2018), pp. 61–81. doi: 10.1080/00207160.2017.1417590
  • S. Reich, Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000), pp. 473–499. doi: 10.1006/jcph.1999.6372
  • Y.M. Tian, and M.Z. Qin, Explicit symplectic schemes for investigating the evolution of vortices in a rotating Bose–Einstein condensate. Comput. Phys. Comm. 155 (2003), pp. 132–143. doi: 10.1016/S0010-4655(03)00352-7
  • H. Tong, L.H. Kong, and L. Wang, Compact splitting multisymplectic scheme for Dirac equation. J. Jiangxi Normal Univer. 38 (2014), pp. 521–525.
  • H.Q. Wang, A time-splitting spectral method for coupled Gross–Pitaevskii equations with applications to rotating Bose–Einstein condensates. J. Comput. Appl. Math. 205 (2007), pp. 88–104. doi: 10.1016/j.cam.2006.04.042
  • T.C. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross–Pitaevskii equations in one dimension. J. Sci. Comput. 59 (2014), pp. 158–186. doi: 10.1007/s10915-013-9757-1
  • L. Wang, L.H. Kong, L.Y. Zhang, W. Zhou, and X. Zheng, Multi-symplectic preserving integrator for the Schrödinger equation with wave operator. Appl. Math. Model. 39 (2015), pp. 6817–6829. doi: 10.1016/j.apm.2015.01.068
  • L. Wang, and Y.S. Wang, High order compact multisymplectic scheme for coupled nonlinear Schrödinger-KdV equation. J. Comput. Math. 36 (2018), pp. 591–604. doi: 10.4208/jcm.1702-m2016-0789
  • T.C. Wang, and X.F. Zhao, Optimal l∞ error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions. Sci. China Math. 57 (2014), pp. 2189–2214. doi: 10.1007/s11425-014-4773-7
  • Y.Z. Zhang, W.Z. Bao, and H.L. Li, Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation. Physica D: Nonlin. Phen. 234 (2007), pp. 49–69. doi: 10.1016/j.physd.2007.06.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.