174
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A self-singularity-capturing scheme for fractional differential equations

&
Pages 933-960 | Received 18 Feb 2020, Accepted 20 Apr 2020, Published online: 20 Jul 2020

References

  • D. Baffet and J. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal. 55(2) (2017), pp. 496–520.
  • E. Barros de Moraes, M. Zayernouri, and M.M. Meerschaert, An integrated sensitivity-uncertainty quantification framework for stochastic phase-field modeling of material damage, Int. J. Numer. Methods Eng. 42 (2020), pp. e201900006.
  • J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), pp. 141–148.
  • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • T. Breiten, V. Simoncini, and M. Stoll, Low-rank solvers for fractional differential equations, Electron. Trans. Numer. Anal. 45 (1983), pp. 107–132.
  • W. Chen and Y. Gu, An improved formulation of singular boundary method, Adv. Appl. Math. Mech.4 (2012), pp. 543–558.
  • D. Craiem, F. Rojo, J. Atienza, R. Armentano, and G. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol 53(17) (2008), pp. 4543.
  • D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204(2) (1996), pp. 609–625.
  • K. Diethelm, J. Ford, N. Ford, and M. Weilbeer, Pitfalls in fast numerical solvers for fractional differential equations, J. Comput. Appl. Math. 186 (2006), pp. 482–503.
  • K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265(2) (2002), pp. 229–248.
  • K. Diethelm, N.J. Ford, and A.D. Freed, Detailed error analysis for a fractional adams method, Numer. Algorithms 36(1) (2004), pp. 31–52.
  • V. Djordjević, J. Jarić, B. Fabry, J. Fredberg, and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng. 31(6) (2003), pp. 692–699.
  • S. Esmaeili, M. Shamsi, and Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on müntz polynomials, Comput. Math. Appl. 62(3) (2011), pp. 918–929.
  • H. Fu, M. Ng, and H. Wang, A divide-and-conquer fast finite difference method for space-time fractional partial differential equation, Comput. Math. Appl. 73 (2017), pp. 1233–1242.
  • G.-h. Gao, Z.-z. Sun, and H.-w. Zhang, A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications, J. Comp. Phys. 259 (2014), pp. 33–50.
  • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dyn. 29(1-4) (2002), pp. 129–143.
  • X. Hei, W. Chen, G. Pang, R. Xiao, and C. Zhang, A new visco-elasto-plastic model via time-space derivative, Mech. Time Depend. Mater. 22 (2018), pp. 129–141.
  • R. Hiptmair and A. Schädle, Non-reflecting boundary conditions for maxwell's equations, Computing 71 (2003), pp. 265–292.
  • D. Hou and C. Xu, A fractional spectral method with applications to some singular problems, Adv. Comput. Math. 43(5) (2017), pp. 911–944.
  • A. Jaishankar and G. McKinley, Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. A 469 (2013), pp. 20120284.
  • A. Jaishankar and G. McKinley, A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids, J. Rheol. 58 (2014), pp. 1751.
  • E. Kharazmi and M. Zayernouri, Fractional pseudo-spectral methods for distributed-order fractional PDEs, Int. J. Comput. Math. 95 (2018), pp. 1–22.
  • E. Kharazmi and M. Zayernouri, Fractional sensitivity equation method: Applications to fractional model construction, J. Sci. Comput. 80 (2019), pp. 110–140.
  • E. Kharazmi, M. Zayernouri, and G.E. Karniadakis, Petrov–Galerkin and spectral collocation methods for distributed order differential equations, SIAM J. Sci. Comput. 39(3) (2017a), pp. A1003–A1037.
  • E. Kharazmi, M. Zayernouri, and G.E. Karniadakis, A Petrov–Galerkin spectral element method for fractional elliptic problems, Comput. Methods Appl. Mech. Eng. 324 (2017b), pp. 512–536.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies Vol. 204, Elsevier Science Inc, New York, NY, 2006.
  • J.-R. Li, A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput. 31(6) (2010), pp. 4696–4714.
  • Y. Liang, W. Chen, B. Akpa, T. Neuberger, A. Webb, and R. Magin, Using spectral and cumulative spectral entropy to classify anomalous diffusion in sephadexTMgels, Comput. Math. Appl. 73 (2017), pp. 765–774.
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comp. Phys. 225(2) (2007), pp. 1533–1552.
  • A. Lischke, M. Zayernouri, and G. Karniadakis, A petrov–galerkin spectral method of linear complexity for fractional multiterm odes on the half line, SIAM J. Sci. Comput. 39(3) (2017), pp. A922–A946.
  • C. Lubich, On the stability of linear multistep methods for Volterra convolution equations, IMA J. Numer. Anal. 3(4) (1983), pp. 439–465.
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), pp. 704–719.
  • C. Lubich and A. Schädle, Fast convoluion for nonreflecting boundary conditions, SIAM J. Sci. Comput. 24 (2002), pp. 161–182.
  • F. Meral, T. Royston, and R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), pp. 939–945.
  • M Naghibolhosseini, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. PhD thesis, City University of New York, NY, 2015.
  • M. Naghibolhosseini and G. Long, Fractional-order modelling and simulation of human ear, Int. J. Comput. Math. 95(6-7) (2018), pp. 1257–1273.
  • P. Perdikaris and G. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng. 42(5) (2014), pp. 1012–1023.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
  • C. Rodrigues, J. Suzuki, and M. Bittencourt, Construction of minimum energy high-order Helmholtz bases for structured elements, J. Comp. Phys. 306 (2016), pp. 269–290.
  • M. Samiee, A. Akhavan-Safaei, and M. Zayernouri, A fractional subgrid-scale model for turbulent flows: Theoretical formulation and a priori study, Phys. Fluids 32 (2019a), pp. 055102.
  • M. Samiee, E. Kharazmi, M. Zayernouri, and M.M. Meerschaert, Petrov-Galerkin method for fully distributed-order fractional partial differential equations, Commun. Appl. Math. Comput. (2020).
  • M. Samiee, M. Zayernouri, and M.M. Meerschaert, A unified spectral method for FPDEs with two-sided derivatives; part I: A fast solver, J. Comp. Phys. 385 (2019b), pp. 225–243.
  • M. Samiee, M. Zayernouri, and M.M. Meerschaert, A unified spectral method for FPDEs with two-sided derivatives; part II: Stability, and error analysis, J. Comp. Phys. 385 (2019c), pp. 244–261.
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
  • A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput. 28(2) (2006), pp. 421–438.
  • M. Stynes, E. O'Riordan, and J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55(2) (2017), pp. 1057–1079.
  • N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech. 225(4) (1991), pp. 631–653.
  • Z.-z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56(2) (2006), pp. 193–209.
  • J. Suzuki and M. Bittencourt, Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage, Springer International Publishing, 2016, pp. 113–150.
  • J. Suzuki, P. Varghaei, E. Kharazmi, and M. Zayernouri, Nonlinear vibration of fractional viscoelastic cantilever beam: Towards structural health monitoring, Submitted to J. Vib. Acoust. ( 2020).
  • J. Suzuki, M. Zayernouri, M. Bittencourt, and G. Karniadakis, Fractional-order uniaxial visco-elasto-plastic models for structural analysis, Comput. Methods Appl. Mech. Eng. 308 (2016), pp. 443–467.
  • J. Suzuki, Y. Zhou, M. D'Elia, and M. Zayernouri, A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials, Submitted to Comput. Methods Appl. Mech. Eng. (2020).
  • E.W. Weisstein, Regularized Hypergeometric Function (2003).
  • Y. Yu, P. Perdikaris. and G. Karniadakis, Fractional modeling of viscoelasticity in 3d cerebral arteries and aneurysms, J. Comp. Phys. 323 (2016), pp. 219–242.
  • M. Zayernouri, W. Cao, Z. Zhang. and G.E. Karniadakis, Spectral and discontinuous spectral element methods for fractional delay equations, SIAM J. Sci. Comput. 36(6) (2014), pp. B904–B929.
  • M. Zayernouri and G.E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional odes, J. Comp. Phys. 257 (2014), pp. 460–480.
  • M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comp. Phys. (Special issue on FPDEs: Theory, Numer., Appl.) 293 (2015), pp. 312–338.
  • M. Zayernouri and A. Matzavinos, Fractional adams-bashforth/moulton methods: An application to the fractional keller-segel chemotaxis system, J. Comp. Phys. 317 (2016), pp. 1–14.
  • F. Zeng, I. Turner, and K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators, J. Sci. Comput. 77 (2018), pp. 283–307.
  • F. Zeng, Z. Zhang, and G. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations, SIAM J. Sci. Comput. 37(6) (2015), pp. A2710–A2732.
  • F. Zeng, Z. Zhang, and G. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, Comput. Methods Appl. Mech. Eng. 327 (2017), pp. 478–502.
  • Y. Zhang, H. Sun, H.H. Stowell, M. Zayernouri, and S.E. Hansen, A review of applications of fractional calculus in earth system dynamics, Chaos Solit. Fractals 102 (2017), pp. 29–46.
  • Y. Zhou, J. Suzuki, C. Zhang, and M. Zayernouri, Implicit-explicit time integration of nonlinear fractional differential equations, Appl. Numer. Math. 156 (2020), pp. 555–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.