488
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Trigonometric quintic B-spline collocation method for singularly perturbed turning point boundary value problems

, ORCID Icon & ORCID Icon
Pages 1029-1048 | Received 19 Feb 2020, Accepted 21 Jun 2020, Published online: 24 Aug 2020

References

  • M. Abbas, A.A. Majid, A.I. Ismail, and A. Rashid, The application of the cubic trigonometric B-spline to the numerical solution of the hyperbolic problems, Appl. Math. Comput. 239 (2014), pp. 74–88.
  • R.C. Ackerberg and R.E. O'Malley, Jr., Boundary layer problems exhibiting resonance, Stud. Appl. Math. 49 (1970), pp. 277–295.
  • K.K. Ali, A.R. Hadhoud, and M.A. Shaalan, Numerical study of self-adjoint singularly perturbed two-point boundary value problems using collocation method with error estimation, J. Ocean Eng. Sci.3 (2018), pp. 237–243.
  • A.S. Alshomrani, S. Pandit, A.K. Alzahrani, M.S. Alghamdi, and R. Jiwari, A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations, Eng. Comput. 34 (2017), pp. 1257–1276.
  • B. Ay, I. Dag, and M.Z. Gorgulu, Trigonometric quadratic B-spline subdomain Galerkin algorithm for the Burgers' equation, Open. Phys. 13 (2015), pp. 400–406.
  • S. Becher and H.-G. Roos, Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers, J. Comput. Appl. Math. 290 (2015), pp. 334–351.
  • A.E. Berger, H. Han, and R.B. Kellogg, On the behaviour of the exact solution and the error in a numerical solution of a turning point problem, in Proc. BAIL II Conf., J.J.H. Miller, ed., Boole Press, Dublin, 1982, pp. 13–27.
  • A.E. Berger, H. Han, and R.B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math. Comp. 42 (1984), pp. 465–492.
  • C.de Boor, On the convergence of odd degree spline interpolation, J. Approx. Theory 1 (1968), pp. 452–463.
  • F.W. Dorr, An example of ill-conditioning in the numerical solution of singular perturbation problems, Math. Comp. 25 (1971), pp. 271–283.
  • P.A. Farrell, Sufficient conditions for the uniform convergence of difference schemes for singularly perturbed turning and non-turning point problems, in Computational and Asymptotic Methods for Boundary and Interior Layers, J.J.H. Miller, ed., Boole Press, Dublin, 1982, pp. 230–235.
  • P.A. Farrell, Uniformly convergent difference schemes for singularly perturbed turning and non-turning point problems, Ph.D. Thesis, Trinity College, Dublin, Ireland, 1983.
  • P.A. Farrell, Sufficient conditions for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J. Numer. Anal. 25 (1988), pp. 618–643.
  • P.A. Farrell, E. O'Riordan, and G.I. Shishkin, A class of singularly perturbed quasilinear differential equations with interior layers, Math. Comp. 78 (2009), pp. 103–127.
  • F. Geng and S.P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett. 26 (2013), pp. 998–1004.
  • O.E. Hepson, Numerical solutions of the Gardner equation via trigonometric quintic B-spline collocation method, Sakarya Unive. J. Sci. 22 (2018), pp. 1576–1584.
  • O.E. Hepson and I. Dag, Numerical solution of singularly perturbed problems via both Galerkin and subdomain Galerkin methods, Appl. Math. Inform. Sci. 12 (2018), pp. 1–6.
  • O.E. Hepson and I. Dag, A cubic subdomain Galerkin method over the geometrically graded mesh to the singularly perturbed problem, AIP Conf. Proc. 1926 (2018), pp. 020015. https://doi.org/10.1063/1.5020464.
  • F.A. Howes, Singularly perturbed nonlinear boundary value problems with turning points, SIAM J. Math. Anal. 6 (1975), pp. 644–660.
  • D. Irk and P. Keskin, Quadratic trigonometric B-spline Galerkin methods for the regularized long wave equation, J. Appl. Anal. Comput. 7 (2017), pp. 617–631.
  • D. Irk, P.K. Yildiz, and M.Z. Görgülü, Quartic trigonometric B-spline algorithm for numerical solution of the regularized long wave equation, Turk. J. Math. 43 (2019), pp. 112–125.
  • R. Jiwari and A.S. Alshomrani, A new algorithm based on modified trigonometric cubic B-splines functions for nonlinear Burgers'-type equations, Internat. J. Numer. Methods Heat Fluid Flow 27 (2017), pp. 1638–1661.
  • R. Jiwari, S. Pandit, and M.E. Koksal, A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems, Comp. Appl. Math. 38 (2019), pp. 140. https://doi.org/10.1007/s40314-019-0918-1.
  • R.B. Kellog and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), pp. 1025–1039.
  • P.E. Koch, Multivariate trigonometric B-splines, J. Approx. Theory 54 (1988), pp. 162–168.
  • D. Kumar, A parameter-uniform method for singularly perturbed turning point problems exhibiting interior or twin boundary layers, Int. J. Comput. Math. 96 (2019), pp. 865–882.
  • T. Linß and R. Vulanović, Uniform methods for semilinear problems with an attractive boundary turning point, Novi Sad J. Math. 31 (2001), pp. 99–114.
  • T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory25 (1979), pp. 266–279.
  • R.E. O'Malley, Jr., On boundary value problems for a singularly perturbed differential equation with a turning point, SIAM J. Math. Anal. 1 (1970), pp. 479–490.
  • B.J. Matkowsky, On boundary layer problems exhibiting resonance, SIAM Rev. 17 (1975), pp. 82–100.
  • W.L. Miranker and J.P. Morreeuw, Semianalytic numerical studies of turning points arising in stiff boundary value problems, Math. Comp. 28 (1974), pp. 1017–1034.
  • J.B. Munyakazi and K.C. Patidar, Performance of Richardson extrapolation on some numerical methods for a singularly perturbed turning point problem whose solution has boundary layers, J. Korean Math. Soc. 51 (2014), pp. 679–702.
  • S. Natesan, J. Jayakumar, and J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math. 158 (2003), pp. 121–134.
  • T. Nazir, M. Abbas, A.I. Ismail, A.A. Majid, and A. Rashid, The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach, Appl. Math. Model.40 (2016), pp. 4586–4611.
  • A. Nikolis, Numerical solutions of ordinary differential equations with quadratic trigonometric splines, Appl. Math. E-Notes 4 (2004), pp. 142–149.
  • A. Nikolis and I. Seimenis, Solving dynamical systems with cubic trigonometric splines, Appl. Math. E-Notes 5 (2005), pp. 116–123.
  • A.T. Onarcan, N. Adar, and I. Dag, Trigonometric cubic B-spline collocation algorithm for numerical solutions of reaction-diffusion equation systems, Comp. Appl. Math. 37 (2018), pp. 6848–6869.
  • I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964), pp. 795–825.
  • G. Sun and M. Stynes, Finite element methods on piecewise equidistant meshes for interior turning point problems, Numer. Algorithms 8 (1994), pp. 111–129.
  • K. Surla and Z. Uzelac, An analysis and improvement of the El Mistikawy and Werle scheme, Publ. Math. Inst. 54 (1993), pp. 144–155.
  • K. Surla and Z. Uzelac, A difference scheme for boundary value problems with turning points, Univ. U. Novom Sadu Zb. Rad. Prirod, Mat. Fak. Ser. Math. 25 (1995), pp. 67–73.
  • J.M. Varah, A lower bound for the smallest singular value of matrix, Linear Algebra Appl. 11 (1975), pp. 3–5.
  • R. Vulanović, On numerical solution of a mildly nonlinear turning point problem, ESAIM: Math. Model. Numer. Anal. 24 (1990), pp. 765–783.
  • R. Vulanović, An L1-stable scheme for linear turning point problems, Z. Angew. Math. Mech. 71 (1991), pp. 403–410.
  • R. Vulanović and P. Lin, Numerical solution of quasi-linear attractive turning point problems, Comput. Math. Appl. 23 (1992), pp. 75–82.
  • G. Walz, Identities for trigonometric B-splines with an application to curve design, BIT 37 (1997), pp. 189–201.
  • A.M. Watts, A singular perturbation problem with a turning point, Bull. Austral. Math. Soc. 5 (1971), pp. 61–73.
  • M. Yaseen, M. Abbas, A.I. Ismail, and T. Nazir, A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations, Appl. Math. Comput. 293 (2017), pp. 311–319.
  • S.M. Zin, M. Abbas, A.A. Majid, and A.I.M. Ismail, A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation, PLoS. ONE. 9 (2014), pp. 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.