142
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A positive and bounded convergent scheme for general space-fractional diffusion-reaction systems with inertial times

& ORCID Icon
Pages 1071-1097 | Received 02 Jun 2020, Accepted 18 Jul 2020, Published online: 17 Aug 2020

References

  • M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo, Constant-size structure-preserving signatures: Generic constructions and simple assumptions, J. Cryptol. 29(4) (2016), pp. 833–878.
  • A. Arakawa and V.R. Lamb, A potential entrophy and energy conserving scheme for the shallow water equations, Monthly Weather Rev. 109(1) (1981), pp. 18–36.
  • S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization, Comput. Methods. Appl. Mech. Eng. 313 (2017), pp. 133–158.
  • E. Balsa-Canto, A. López-Núñez, and C. Vázquez, Numerical methods for a nonlinear reaction–diffusion system modelling a batch culture of biofilm, Appl. Math. Model. 41 (2017), pp. 164–179.
  • M Banerjee, Turing and non-turing patterns in two-dimensional prey-predator models, in Applications of Chaos and Nonlinear Dynamics in Science and Engineering, Vol. 4, Springer, 2015, pp. 257–280.
  • G. Ben-Yu, P.J. Pascual, M.J. Rodriguez, and L. Vázquez, Numerical solution of the sine-Gordon equation, Appl. Math. Comput. 18(1) (1986), pp. 1–14.
  • R. Bürger, G. Chowell, E. Gavilán, P. Mulet, and L.M. Villada, Numerical solution of a spatio-temporal predator-prey model with infected prey, Math. Biosci. Eng. 16 (2018), pp. 438–473.
  • A. Cascone, R. Manzo, B. Piccoli, and L. Rarità, Optimization versus randomness for car traffic regulation, Phys. Rev. E. 78(2) (2008), p. 026113.
  • A. Cutolo, C. De Nicola, R. Manzo, and L. Rarità, Optimal paths on urban networks using travelling times prevision, Model. Simulat. Engin. 2012 (2012), p. 9.
  • C. D'Apice, R. Manzo, and L. Rarità, Splitting of traffic flows to control congestion in special events, Int. J. Math. Math. Sci. 2011 (2011), p. 18.
  • M. de Falco, M. Gaeta, V. Loia, L. Rarità, and S. Tomasiello, Differential quadrature-based numerical solutions of a fluid dynamic model for supply chains, Commun. Math. Sci. 14(5) (2016), pp. 1467–1476.
  • A. De Wit, Spatial patterns and spatiotemporal dynamics in chemical systems, Adv. Chem. Phys. 109 (2007), pp. 435–513.
  • V. Dufiet and J. Boissonade, Dynamics of Turing pattern monolayers close to onset, Phys. Rev. E. 53(5) (1996), p. 4883.
  • V. Ervin, J. Macías-Díaz, and J. Ruiz-Ramírez, A positive and bounded finite element approximation of the generalized burgers–huxley equation, J. Math. Anal. Appl. 424(2) (2015), pp. 1143–1160.
  • H. Fazli, H. Sun, and S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math. (2020), pp. 1–10. https://doi.org/10.1080/00207160.2020.1720662.
  • Z. Fei and L. Vázquez, Some conservative numerical schemes for an ordinary differential equation, Comput. Appl. Math. 10 (1991), pp. 59–69.
  • A. Friedman, Foundations of Modern Analysis, Courier Corporation, New York, 1970.
  • K.M. Furati, M. Yousuf, and A.Q.M. Khaliq, Fourth-order methods for space fractional reaction–diffusion equations with non-smooth data, Int. J. Comput. Math. 95(6–7) (2018), pp. 1240–1256.
  • D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numerische Mathematik 87(4) (2001), pp. 675–699.
  • D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math. 134(1) (2001), pp. 37–57.
  • D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-preserving Numerical Method for Partial Differential Equations, CRC Press, New York, 2010.
  • D. Furihata, S. Sato, and T. Matsuo, A novel discrete variational derivative method using“average-difference methods”, JSIAM Lett. 8 (2016), pp. 81–84.
  • B. Ghanbari, A. Yusuf, and D. Baleanu, The new exact solitary wave solutions and stability analysis for the (2+ 1) (2+1)-dimensional Zakharov–Kuznetsov equation, Adv. Differ. Equ. 2019(1) (2019), p. 49.
  • W.G. Glöckle and T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophys. J. 68(1) (1995), pp. 46–53.
  • C. Huang, J. Cao, M. Xiao, A. Alsaedi, and F.E. Alsaadi, Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders, Appl. Math. Comput. 293 (2017), pp. 293–310.
  • A. Ibrahimbegovic and S. Mamouri, Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations, Comput. Methods. Appl. Mech. Eng. 191(37-38) (2002), pp. 4241–4258.
  • T. Ide, Some energy preserving finite element schemes based on the discrete variational derivative method, Appl. Math. Comput. 175(1) (2006), pp. 277–296.
  • T. Ide and M. Okada, Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method, J. Comput. Appl. Math. 194(2) (2006), pp. 425–459.
  • O.S. Iyiola, E. Asante-Asamani, K.M. Furati, A.Q.M. Khaliq, and B.A. Wade, Efficient time discretization scheme for nonlinear space fractional reaction–diffusion equations, Int. J. Comput. Math. 95(6–7) (2018), pp. 1274–1291.
  • A.Q.M. Khaliq, X. Liang, and K.M. Furati, A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations, Numer. Algorithms. 75(1) (2017), pp. 147–172.
  • A.N. Kochubei and Y. Kondratiev, Growth equation of the general fractional calculus, Mathematics7(7) (2019), p. 615.
  • R. Koeller, Applications of fractional calculus to the theory of viscoelasticity, ASME Trans. J. Appl. Mech. 51 (1984), pp. 299–307. ISSN 0021-8936.
  • H. Kuramae and T. Matsuo, An alternating discrete variational derivative method for coupled partial differential equations, JSIAM Lett. 4 (2012), pp. 29–32.
  • N. Laskin, Fractional Schrödinger equation, Phys. Rev. E. 66(5) (2002), p. 056108.
  • H.-L. Li, A. Muhammadhaji, L. Zhang, and Z. Teng, Stability analysis of a fractional-order predator–prey model incorporating a constant prey refuge and feedback control, Adv. Differ. Equ.2018(1) (2018), p. 325.
  • J.E. Macías-Díaz, Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations in two space dimensions, Phys. Rev. E. 77(1) (2008), p. 016602.
  • J.E. Macías-Díaz, A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, J. Comput. Phys.351 (2017), pp. 40–58.
  • J.E. Macías-Díaz, Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines, Commun. Nonlinear Sci. Numer. Simulat. 53 (2017), pp. 31–43.
  • J.E. Macías-Díaz, Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains, Commun. Nonlinear Sci. Numerical Simulat. 55 (2018), pp. 248–264.
  • J.E. Macías-Díaz, On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme, Int. J. Comput. Math. 96(2) (2019), pp. 337–361.
  • J.E. Macías-Díaz and J. Villa-Morales, A deterministic model for the distribution of the stopping time in a stochastic equation and its numerical solution, J. Comput. Appl. Math. 318 (2017), pp. 93–106.
  • T. Matsuo, Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations, J. Comput. Appl. Math.218(2) (2008), pp. 506–521.
  • R.E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl. 11(7) (2005), pp. 645–653.
  • M.D. Morales-Hernández, I.E. Medina-Ramírez, F.J. Avelar-González, and J.E. Macías-Díaz, An efficient recursive algorithm in the computational simulation of the bounded growth of biological films, Inter. J. Comput. Methods 9(04) (2012), p. 1250050.
  • A. Mvogo, J.E. Macías-Díaz, and T.C. Kofané, Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion, Phys. Rev. E. 97(3) (2018), p. 032129.
  • V. Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math. 25(3) (1980), pp. 241–265.
  • M.D. Ortigueira, Fractional central differences and derivatives, IFAC Proc. Vol. 39(11) (2006), pp. 58–63.
  • M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci. 2006 (2006), p. 12.
  • M.D. Ortigueira, Fractional Calculus for Scientists and Engineers, Vol. 84, New York: Springer, 2011.
  • M.D. Ortigueira and A.G. Batista, On the relation between the fractional brownian motion and the fractional derivatives, Phys. Lett. A 372(7) (2008), pp. 958–968.
  • M.D. Ortigueira and F. Coito, From differences to derivatives, Fract. Calc. Appl. Anal. 7(4) (2004), p. 459.
  • M.D. Ortigueira and J.J. Trujillo, Generalized gl fractional derivative and its laplace and fourier transform, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 49019, 2009, pp. 1227–1231.
  • K. Pen-Yu, Numerical methods for incompressible viscous flow, Sci. Sin. 20 (1977), pp. 287–304.
  • Y. Peng and T. Zhang, Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl. Math. Comput. 275 (2016), pp. 1–12.
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198, Amsterdam: Elsevier, 1998.
  • Y. Povstenko, Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Physica Scripta 2009(T136) (2009), p. 014017.
  • F. Rao and Y. Kang, The complex dynamics of a diffusive prey–predator model with an allee effect in prey, Ecol. Complex. 28 (2016), pp. 123–144.
  • L. Rarità, C. D'Apice, B. Piccoli, and D. Helbing, Sensitivity analysis of permeability parameters for flows on barcelona networks, J. Differ. Equ. 249(12) (2010), pp. 3110–3131.
  • F. Rihan, S. Lakshmanan, A. Hashish, R. Rakkiyappan, and E. Ahmed, Fractional-order delayed predator–prey systems with holling type-II functional response, Nonlinear. Dyn.80(1-2) (2015), pp. 777–789.
  • I. Romero and F. Armero, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics, Int. J. Numer. Methods. Eng. 54(12) (2002), pp. 1683–1716.
  • E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A Stat. Mech. Appl. 284(1) (2000), pp. 376–384.
  • J. Singh, D. Kumar, and D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ. 2018(1) (2018), p. 231.
  • F. Soltani Sarvestani, M.H. Heydari, A. Niknam, and Z. Avazzadeh, A wavelet approach for the multi-term time fractional diffusion-wave equation, Int. J. Comput. Math. 96(3) (2019), pp. 640–661.
  • W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys. 28(2) (1978), pp. 271–278.
  • Y. Suzuki and M. Ohnawa, Generic formalism and discrete variational derivative method for the two-dimensional vorticity equation, J. Comput. Appl. Math. 296 (2016), pp. 690–708.
  • Y.-F. Tang, L. Vázquez, F. Zhang, and V. Pérez-García, Symplectic methods for the nonlinear Schrödinger equation, Comput. Math. Appl. 32(5) (1996), pp. 73–83.
  • S. Tomasiello, A note on three numerical procedures to solve volterra integrodifferential equations in structural analysis, Comput. Math. Appl. 62 (2011), pp. 3183–3193.
  • S. Tomasiello, Some remarks on a new dq-based method for solving a class of volterra integro-differential equations, Appl. Math. Comput. 219 (2012), pp. 399–407.
  • R. Upadhyay, V. Volpert, and N. Thakur, Propagation of turing patterns in a plankton model, J. Biol. Dyn. 6(2) (2012), pp. 524–538.
  • A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A.M. Schlitter, I. Esposito, and N. Navab, Structure-preserving color normalization and sparse stain separation for histological images, IEEE. Trans. Med. Imaging. 35(8) (2016), pp. 1962–1971.
  • Y. Wang and Z. Li, A family of convexity-preserving subdivision schemes, J. Math. Res. Appl 37(4) (2017), pp. 489–495.
  • Y.-M. Wang and L. Ren, Efficient compact finite difference methods for a class of time-fractional convection–reaction–diffusion equations with variable coefficients, Int. J. Comput. Math. 96(2) (2019), pp. 264–297.
  • X. Wang, F. Liu, and X. Chen, Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations, Adv. Math. Phys. 2015 (2015), p. 14.
  • L. Wang, Y. Li, and S Lazebnik, Learning deep structure-preserving image-text embeddings, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5005–5013.
  • J. Wang, H. Cheng, H. Liu, and Y. Wang, Periodic solution and control optimization of a prey-predator model with two types of harvesting, Adv. Differ. Equ. 2018(1) (2018), p. 41.
  • Y. Xiao and L. Chen, Modeling and analysis of a predator–prey model with disease in the prey, Math. Biosci. 171(1) (2001), pp. 59–82.
  • A. Yusuf, A.I. Aliyu, Baleanu, D., et al., Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation, Adv. Differ. Equ. 2018(1) (2018), p. 319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.