191
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Error estimates for Galerkin finite element approximations of time-fractional nonlocal diffusion equation

ORCID Icon &
Pages 1365-1384 | Received 26 Nov 2019, Accepted 27 Aug 2020, Published online: 23 Sep 2020

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438. doi: 10.1016/j.jcp.2014.09.031
  • V. Anaya, M. Bendahmane, and M. Sepúlveda, Mathematical and numerical analysis for predator-prey system in a polluted environment, Netw. Heterog. Media. 5 (2010), pp. 813–847. doi: 10.3934/nhm.2010.5.813
  • S. Chaudhary, Crank–Nicolson–Galerkin finite element scheme for nonlocal coupled parabolic problem using the Newton method, Meth. Appl. Sci. 41 (2018), pp. 724–749.
  • M. Chipot and B. Lovat, On the asymptotic behaviour of some nonlocal problems, Positivity 3 (1999), pp. 65–81. doi: 10.1023/A:1009706118910
  • T.A. Davis, Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), pp. 196–199. doi: 10.1145/992200.992206
  • T.A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), pp. 167–195.
  • M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algorithms 73 (2016), pp. 445–476. doi: 10.1007/s11075-016-0103-1
  • J.C.M. Duque, R.M.P. Almeida, S.N. Antontsev, and J. Ferreira, The Euler–Galerkin finite element method for a nonlocal coupled system of reaction diffusion type, J. Comput. Appl. Math. 296 (2016), pp. 116–126. doi: 10.1016/j.cam.2015.09.019
  • S. Ganesan and L. Shangerganesh, A biophysical model for tumor invasion, Commun. Nonlinear Sci. Numer. Simul. 46 (2017), pp. 135–152. doi: 10.1016/j.cnsns.2016.10.013
  • S. Ganesan and L. Shangerganesh, Galerkin finite element method for cancer invasion mathematical model, Comput. Math. Appl. 73 (2017), pp. 2603–2617. doi: 10.1016/j.camwa.2017.04.006
  • S. Ganesan and L. Tobiska, An accurate finite element scheme with moving meshes for computing 3d-axisymmetric interface flows, Int. J. Numer. Meth. Fluids. 57 (2008), pp. 119–138. doi: 10.1002/fld.1624
  • F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), pp. 251–265. doi: 10.1515/jnum-2012-0013
  • A.S. Hendy and M.A. Zaky, Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math. 56 (2020), pp. 276–302. doi: 10.1016/j.apnum.2020.05.002
  • B.I. Henry and S.L. Wearne, Fractional reaction-diffusion, Phys. A 276 (2000), pp. 448–455. doi: 10.1016/S0378-4371(99)00469-0
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • V.R. Hosseini, E. Shivanian, and W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys. 312 (2016), pp. 307–332. doi: 10.1016/j.jcp.2016.02.030
  • C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, and J.H.T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), pp. 141–159. doi: 10.1016/j.cnsns.2017.04.001
  • J.H. Jia and H. Wang, A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh, J. Comput. Phys. 299 (2015), pp. 842–862. doi: 10.1016/j.jcp.2015.06.028
  • B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal. 51 (2013), pp. 445–466. doi: 10.1137/120873984
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • K.N. Le, W. McLean, and K. Mustapha, Numerical solution of the time-fractional Fokker–Planck equation with general forcing, SIAM. J. Numer. Anal. 54 (2016), pp. 1763–1784. doi: 10.1137/15M1031734
  • D. Li, H.-L. Liao, W. Sun, J. Wang, and J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Comun. Comput. Phys. 24 (2018), pp. 86–103.
  • X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal. 47 (2009), pp. 2108–2131. doi: 10.1137/080718942
  • Y. Li, Y. Chen, and I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamics systems, Automatica 45 (2009), pp. 1965–1969. doi: 10.1016/j.automatica.2009.04.003
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • C.P. Li and F.H. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifur. Chaos 22 (2012), pp. 427–432.
  • F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), pp. 3871–3878. doi: 10.1016/j.apm.2013.10.007
  • J. Manimaran, L. Shangerganesh, and A. Debbouche, Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy, J. Comput. Appl. Math. 382 (2020), p. 113066.
  • J. Manimaran, L. Shangerganesh, A. Debbouche, and V. Antonov, Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion, Front Phys. 7 (2019), p. 93. doi: 10.3389/fphy.2019.00093
  • R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), pp. 437–445. doi: 10.1090/S0025-5718-1982-0645661-4
  • C.A. Raposo, M. Sepúlveda, O.V. Villagrán, D.C. Pereira, and M.L. Santos, Solution and asymptotic behavior for a nonlocal coupled system of reaction-diffusion, Acta. Appl. Math. 102 (2008), pp. 37–56. doi: 10.1007/s10440-008-9207-5
  • F. Ren, F. Cao, and J. Cao, Mittag–Leffler stability and generalized Mittag–Leffler stability of fractional-order gene regulatory networks, Neurocomputing 160 (2015), pp. 185–190. doi: 10.1016/j.neucom.2015.02.049
  • Z.Z. Sun and X. Wu, A fully discrete scheme for a diffusion wave system, Appl. Numer. Math. 56(2) (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.
  • Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier–Stokes equations and optimal control, Comput. Math. Appl. 73 (2017), pp. 1016–1027. doi: 10.1016/j.camwa.2016.07.007
  • Y. Zhou, L. Shangerganesh, J. Manimaran, and A. Debbouche, A class of time fractional reaction–diffusion equation with nonlocal boundary condition, Math. Meth. Appl. Sci. 41 (2018), pp. 2987–2999. doi: 10.1002/mma.4796
  • M.A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math. 145 (2019), pp. 429–457. doi: 10.1016/j.apnum.2019.05.008
  • M.A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math. 357 (2019), pp. 103–122. doi: 10.1016/j.cam.2019.01.046
  • M.A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math. 154 (2020), pp. 205–222. doi: 10.1016/j.apnum.2020.04.002
  • M.A. Zaky, I.G. Ameen, A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions. Eng. Comput. (2020), pp. 1–9. https://doi.org/10.1007/s00366-020-00953-9.
  • M.A. Zaky, E.H. Doha, and J.T. Machado, A spectral framework for fractional variational problems based on fractional Jacobi functions, Appl. Numer. Math. 132 (2018), pp. 51–72. doi: 10.1016/j.apnum.2018.05.009
  • M.A. Zaky, A.S. Hendy, and J.E. Macías-Díaz, Semi-implicit Galerkin–Legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions, J. Sci. Comput. 82 (2020), pp. 1–27. doi: 10.1007/s10915-019-01117-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.